Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Footer Voltage Controlled Dual Keeper Domino Logic with Static Switching Approach

Chirag Parashar, Avijeet Kumar Trivedi, Aman Agarwal, Neeta Pandey

DOI: 10.15598/aeee.v18i4.3794


Abstract

In this paper, two circuits, namely Footer Voltage Controlled Dual Keeper domino logic (FVCDK) and Footer Voltage Controlled Dual Keeper with Static Switching domino logic (FVCDK-SS) are presented, in order to achieve high speed, low power consumption and robustness. The dual keeper arrangement helps in reducing the loop gain of the feedback circuitry, which leads to lower delay variability. The keeper circuitry is controlled using the footer voltage to reduce the contention current in the initial evaluation phase, and thus providing enhanced speed. In FVCDK-SS domino logic, unwanted transients at the output are reduced by incorporating pseudo-dynamic buffer in the proposed FVCDK domino logic. This further reduces the dynamic power consumption. The results of the logic presented here are validated by comparing them to a wide range of existing domino logic circuits for a~variety of performance metrics such as delay, power, power-delay product and unity noise gain. To effectively gauge the wide fan-in capabilities of the proposed logic, results are shown for the various fan-in OR gate. The simulations of the circuits are carried out using industry standard full-suite Cadence tools using 45~nm technology library.

Keywords


Contention current; corner analysis; delay variability; domino logic; static switching.

Full Text:

PDF