Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Frantisek Cvachovec
University of Defence, Czech Republic

Annraoi M de Paor
University College Dublin, Ireland

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Pavel Fiala
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Valeria Hrabovcova
University of Zilina, Slovakia

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Igor Piotr Kurytnik
University of Bielsko-Biala, Poland

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Luigi Martirano
University of Rome "La Sapienza", Italy

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Ibrahim Taner Okumus
Sutcu Imam University, Turkey

Milos Orgon
Slovak University of Technology, Slovakia

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Martin Vaculik
University of Zilina, Slovakia

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Vladimir Vasinek
VSB - Technical University of Ostrava, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


Comparison between Different Control Strategies of a Z-Source Inverter Based Dynamic Voltage Restorer

Abolfazl Kazemdehdashti, Ali Reza Seifi, Amin Shabanpoor Haghighi

DOI: 10.15598/aeee.v11i3.782


Abstract

In this paper, dynamic voltage restorer (DVR) compensation methods are compared to each other for the load side connected shunt converter topology of z-source inverter based DVR to choose the best method. Four different topologies are recognized for DVR that two of them have energy storage devices, and two topologies have no energy storage that take ener\-gy from the grid during the period of compensation. Here the load side connected shunt converter topology that takes necessary energy from the grid is used. Pre-sag compensation, in-phase compensation, energy-optimized methods are the three DVR compensation methods that studied and compared. A deep analysis through different diagrams would show the advantages or disadvantages of each compensation method. Equations for all methods are derived and the characteristics of algorithms are compared with each other. The simulation results done by SIMULINK/ MATLAB shows compensating by this topology based on the compensation methods.

Keywords


Compensation methods; close loop control; dynamic voltage restorer; topology; Z-source inverter.

Full Text:

PDF