Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


A Hybrid Dynamic Nonlinear Controller for Variable Speed Wind Turbine in Low Wind Velocity Regime

EL Kabira EL Mjabber, Abdellatif Khamlichi

DOI: 10.15598/aeee.v22i2.5335


Abstract

The purpose of this paper is to propose a new control approach to be applied to a variable rotor speed wind turbine at low wind velocity zone. The aim is to reduce dynamic mechanical loads and optimize energy production by acting on the generator torque through a new hybrid adaptive controller. This combines two well-known nonlinear methods: nonlinear control based on Radial Basis Function Neural Networks used to estimate the nonlinear part of the wind turbine system and Integral Sliding Mode Control to tackle system uncertainties. Lyapunov’s approach has been applied to assess stability of this new controller. Then, simulations were carried out using the Matlab/Simulink software package. The obtained results demonstrated superior performance of the hybrid controller compared to each controller taken alone.

Keywords


Nonlinear control, integral sliding mode control, radial basis function neural network controller, variable speed wind turbine control, wind energy.

References

EL MJABBER, E. K., A. El Hajjaji, and A. Khamlichi. A hybrid adaptive controller based on sliding mode control and rbf neural network for variable speed wind turbine. Int. Rev. Appl. Sci. Eng. 2016, vol. 7, no. 2, pp. 61–70. ISSN: 2062-0810. Doi: 10.1556/1848.2016.7.2.1.

ABOLVAFAEI , M., and S. Ganjefar. Electrical Power and Energy Systems Maximum power extraction from fractional order doubly fed induction generator based wind turbines using homotopy singular perturbation method. Electr. Power Energy Syst. 2020,vol. 119, no. December 2019, p. 105889. ISSN 0142-0615. Doi: 10.1016/j.ijepes.2020.105889.

BOUKHEZZAR, B., and H. Siguerdidjane. Comparison between linear and nonlinear control strategies for variable speed wind turbines. 2010, Control Eng. Pract., vol. 18, no. 12, pp. 1357–1368. ISSN 0967-0661. Doi: 10.1016/j.conengprac.2010.06.010.

NIE, Y., J. Liu, L. Gao, Y. Wu, and Z. Li. Nonlinear rotor kinetic energy control strategy of DFIG-based wind turbine participating in grid frequency regulation. 2023, Electr. Power Syst. Res., vol. 223, p. 109678. ISSN 0378-7796. Doi: 10.1016/J.EPSR.2023.109678.

EL MJABBER, E. K., A. Khamlichi, and A. El Hajjaji. Nonlinear control of wind turbine in above rated wind speed region. Pollack Period.2021, vol. 17, no. 1, pp. 72–77. ISSN: 1788-1994. Doi: 10.1556/606.2021.00411.

SARAVANAKUMAR, R. , and D. Jena. Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine. Int. J. Electr. Power Energy Syst. 2015, vol. 69, pp. 421–429. ISSN 0142-0615. Doi: 10.1016/j.ijepes.2015.01.031.

BEN ZAROUALA, R. O., and E. El Mjabber. Sliding Mode Based Control for a Flexible Wind Turbine. Energy Procedia. 2017, vol. 141, pp. 399–404, 2017. ISSN 1876-6102. Doi: 10.1016/j.egypro.2017.11.050.

CHEHAIDIA, S. E., et al. Robust Nonlinear Terminal Integral Sliding Mode Torque Control for Wind Turbines Considering Uncertainties. IFAC-PapersOnLine. 2022, vol. 55, no. 12, pp. 228–233, Jan. 2022. ISSN 2405-8963. Doi: 10.1016/J.IFACOL.2022.07.316.

BARAMBONES, O. A robust wind turbine control using a neural network based wind speed estimator. Proc. Int. Jt. 2010, Conf. Neural Networks. ISBN: 978-1-4244-6918-5. Doi: 10.1109/IJCNN.2010.5596859.

DE CARVALHO, W. C., R. P. Bataglioli, R. A. S. Fernandes, and D. V Coury. Fuzzy-based approach for power smoothing of a full-converter wind turbine generator using a supercapacitor energy storage. Electr. Power Syst. Res.2020, vol. 184, no. February, p. 106287. ISSN 0378-7796. Doi: 10.1016/j.epsr.2020.106287.

ASSAREH, E., and M. Biglari. A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm. Renew. Sustain. Energy Rev. 2015,, vol. 51, pp. 1023–1037. ISSN 1364-0321. Doi: 10.1016/j.rser.2015.07.034.

ASGHARNIA, A., A. Jamali, R. Shahnazi, and A. Maheri. Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller. ISA Trans. 2020, vol. 96, pp. 272–286. ISSN 0019-0578. Doi: 10.1016/j.isatra.2019.07.006.

BOUKHEZZAR, B., and H. Siguerdidjane. Nonlinear control of a variable-speed wind turbine using a two-mass model. 2011, IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 149–162. ISSN: 0885-8969. Doi: 10.1109/TEC.2010.2090155.

ABOLVAFAEI , M., and S. Ganjefar. Maximum power extraction from a wind turbine using second-order fast terminal sliding mode control. Renew. Energy. 2019, vol. 139, pp. 1437–1446. ISSN 0960-1481. Doi: 10.1016/j.renene.2019.03.044.

DAHHANI, O., A. El-jouni, and I. Boumhidi. Assessment and control of wind turbine by support vector machines. Sustain. Energy Technol. Assessments. 2018, vol. 27, no. March, pp. 167–179. ISSN 2213-1388. Doi: 10.1016/j.seta.2018.04.006.

ABOUDRAR, I., S. El Hani, H. Mediouni, and A. Aghmadi. Modeling and robust control of a grid connected direct driven PMSG wind turbine by ADRC. Adv. Electr. Electron. Eng. 2018, vol. 16, no. 4, pp. 402–413. ISSN: 1336-1376. Doi: 10.15598/aeee.v16i4.2952.

RAJENDRAN , S., and D. Jena. Control of Variable Speed Variable Pitch Wind Turbine at Above and Below Rated Wind Speed. J. Wind Energy. 2014, vol. 2014, pp. 1–14. Doi: 10.1155/2014/709128.

TAGHINEZHAD, J., and S. Sheidaei. Prediction of operating parameters and output power of ducted wind turbine using artificial neural networks. Energy Reports. 2022, vol. 8, pp. 3085–3095. ISSN 2352-4847. Doi: 10.1016/J.EGYR.2022.02.065.

LIU, J. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems. Berlin Heidelberg,: Springer-Verlag, 2013. ISBN: 9783642348167.


Full Text:

PDF