Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Nguyen Truong Khang
Van Lang University, Vietnam

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Nguyen Huu Khanh Nhan
Ton Duc Thang University, Vietnam

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam

Home Search Mail RSS


Samatar ABDI YONIS, Ziyodulla YUSUPOV, Adib HABBAL, Olimjon TOIROV

DOI: 10.15598/aeee.v21i3.5149


Doubly fed induction generator (DFIG) has been frequently utilized in wind turbines due to its ability to handle variable speed operations. This study investigates the real parameters of a Mitsubishi company MWT 92/2.4 MW wind turbine model. It performs and implements grid-connected variable speed turbines, to control the active and reactive powers. Moreover, it presents a vector control strategy of DFIG for controlling the generated stator power. Meanwhile, the rotor side converter (RSC) and grid side converter (GSC) are developed separately. Proportional-Integral (PI) controller and maximum power point tracking (MPPT) algorithm are implemented to regulate the generated torque, active or reactive powers, grid voltage, stator and rotor currents. In addition, MPPT and PI controllers are compared in terms of settling time. Thus, the result demonstrates that the performance of the MPPT technique provides strong robustness and reaches steady-state much faster than the PI controller with variable parameters. To the contrary, typical PI controller gives fast response in tracking the references of DFIG magnitudes. The effectiveness of the overall system is tested by MATLAB simulation.


DFIG; PI controller; MPPT algorithm; vector control; wind turbine.


BENKAHLA, M., R. TALEB, and Z. BOUDJEMA. Comparative Study of Robust Control Strategies for a Dfig-Based Wind Turbine. Int. J. Adv. Comput. Sci. Appl. 2016, vol. 7, iss. 2, pp. 455–462. ISSN 2156-5570. doi: 10.14569/ijacsa.2016.070261.

JAIN, B., S. JAIN, and R. K. NEMA. Control strategies of grid interfaced wind energy conversion system: An overview. Renew. Sustain. Energy Rev. 2015, vol. 47, pp. 983–996. ISSN 1364-0321. doi: 10.1016/j.rser.2015.03.063.

JENA, D. and S. RAJENDRAN. A review of estimation of effective wind speed based control of wind turbines. Renew. Sustain. Energy Rev. 2015, vol. 43, pp. 1046–1062. ISSN 13640321. doi: 10.1016/j.rser.2014.11.088.

PATI, S. and S. SAMANTRAY. Decoupled control of active and reactive power in a DFIG based wind energy conversion system with conventional P-I controllers. In: Int. Conf. Circuits, Power Comput. Technol. ICCPCT. 2014, pp. 898–903. ISSN 978-1-4799-2397-7. doi: 10.1109/ICCPCT.2014.7054793.

OUYANG, J., T. TANG, J. YAO, and M. LI. Active voltage control for DFIG-based wind farm integrated power system by coordinating active and reactive powers under wind speed variations. IEEE Trans. Energy Convers. 2019, vol. 34, iss. 3, pp. 1504–1511. ISSN 0885-8969. doi: 10.1109/TEC.2019.2905673.

KERROUCHE, K., A. MEZOUAR, and K. BELGACEM. Decoupled control of doubly fed induction generator by vector control for wind energy conversion system. Energy Procedia. 2013, vol. 42, pp. 239–248. ISSN 1876-6102. doi: 10.1016/j.egypro.2013.11.024.

GHOUDELBOURK, S., D. DIB, and A. OMEIRI. Decoupled control of active and reactive power of a wind turbine based on DFIG and matrix converter. Energy Syst. 2016, vol. 7, iss. 3, pp. 483–497. ISSN 1868-3967. doi: 10.1007/s12667-015-0177-1.

AYDIN, E., A. POLAT, and L. T. ERGENE. Vector control of DFIG in wind power applications. In: IEEE Int. Conf. Renew. Energy Res. Appl. ICRERA. Birmingham, IEEE, 2016, vol. 5, iss. 1, pp. 478–483. ISSN 978-1-5090-3388-1. doi: 10.1109/ICRERA.2016.7884383.

JABR, H. M., D. LU, and N. C. KAR. Design and implementation of neuro-fuzzy vector control for wind-driven doubly-fed induction generator. IEEE Trans. Sustain. Energy. 2011, vol. 2, iss. 4, pp. 404–413. ISSN 1949-3029. doi: 10.1109/TSTE.2011.2160374.

LI, S., T. A. HASKEW, K. A. WILLIAMS, and R. P. SWATLOSKI. Control of DFIG wind turbine with direct-current vector control configuration. IEEE Trans. Sustain. Energy. 2012, vol. 3, iss. 1, pp. 1–11. ISSN 1949-3029. doi: 10.1109/TSTE.2011.2167001.

WANG, T., L. DING, S. YIN, J. JIANG, F. CHENG, and J. SI. A new control strategy of DFIG-based wind farms for power system frequency regulation. In: IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2015, vol. 3, pp. 1–5. ISSN 978-1-4673-8132-1. doi: 10.1109/APPEEC.2015.7380877.

HUGHES, F. M., O. ANAYA-LARA, N. JENKINS, and G. STRBAC. Control of DFIG-based wind generation for power network support. IEEE Trans. Power Syst. 2005, vol. 20, iss. 4, pp. 1958–1966. ISSN 0885-8950. doi: 10.1109/TPWRS.2005.857275.

FDAILI, M., A. ESSADKI, and T. NASSER. Comparative analysis between robust SMC & conventional PI controllers used in WECS based on DFIG. Int. J. Renew. Energy Res. 2017, vol. 7, iss. 4, pp. 2152–2161. ISSN 1309-0127 doi: 10.20508/ijrer.v7i4.6441.g7267.

EL AZZAOUI. M. and H. MAHMOUDI. Fuzzy-PI control of a doubly fed induction generator-based wind power system. Int. J. Autom. Control. 2017, vol. 11, iss. 1, pp. 54–66. ISSN 1740-7516. doi: 10.1504/IJAAC.2017.080819.

HAMANE, B., M. BENGHANEM, A. M. BOUZID, A. BELABBES, M. BOUHAMIDA, and A. DRAOU. Control for variable speed wind turbine driving a doubly fed induction generator using fuzzy-PI control. Energy Procedia. 2012, vol. 18, pp. 476–485. ISSN 1876-6102. doi: 10.1016/j.egypro.2012.05.059.

ZHU, R., Z. CHEN, Y. TANG, F. DENG, and X. WU. Dual-loop control strategy for DFIG-based wind turbines under grid voltage disturbances. IEEE Trans. Power Electron. 2016, vol. 31, iss. 3, pp. 2239–2253. ISSN 0885-8993. doi: 10.1109/TPEL.2015.2442520.

TREMBLAY, E., S. ATAYDE, and A. CHANDRA. Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: A DSP-based implementation approach. IEEE Trans. Sustain. Energy. 2011, vol. 2, iss. 3, pp. 288–299. ISSN 1949-3029. doi: 10.1109/TSTE.2011.2113381.

NIAN, H. and X. YI. Coordinated control strategy for doubly-fed induction generator with DC connection topology. IET Renew. Power Gener. 2015, vol. 9, iss. 7, pp. 747–756. ISSN 1752-1416. doi: 10.1049/iet-rpg.2014.0347.

WU, Y. K. and W. H. YANG. Different Control Strategies on the Rotor Side Converter in DFIG-based Wind Turbines. Energy Procedia. 2016, vol. 100, pp. 551–555. ISSN 1876-6102. doi: 10.1016/j.egypro.2016.10.217.

ABAD, G., J. LÓPEZ, M. A. RODRÍGUEZ, L. MARROYO, and G. IWANSKI. Doubly Fed Induction Machine. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. ISBN 9781118104965.

YAICHI, I., A. SEMMAH, and P. WIRA. Direct Power Control of a Wind Turbine Based on Doubly Fed Induction Generator. Eur. J. Electr. Eng. 2019, vol. 21, iss. 5, pp. 457–464. ISSN 2103-3641. doi: 10.18280/ejee.210508.

IBRAHIM, A. Vector control of current regulated inverter connected to grid for wind energy applications. Int. J. Renew. Energy Technol. 2009, vol. 1, iss. 1, p. 17. ISSN 1757-3971. doi: 10.1504/IJRET.2009.024728.

KUMHAR, A. R. Vector Control Strategy to Control Active and Reactive Power of Doubly Fed Induction Generator Based Wind Energy Conversion System. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). 2018, pp. 1–9. ISBN 978-1-5386-3570-4. doi: 10.1109/ICOEI.2018.8553761.

JUNYENT-FERRÉ, A., O. GOMIS-BELLMUNT, A. SUMPER, M. SALA, and M. MATA. Modeling and control of the doubly fed induction generator wind turbine. Simul. Model. Pract. Theory. 2010, vol. 18, iss. 9, pp. 1365–1381. ISSN 1569-190X. doi: 10.1016/j.simpat.2010.05.018.

AKHMATOV, V., A. H. NIELSEN, J. K. PEDERSEN, and O. NYMANN. Variable-speed wind turbines with multi-pole synchronous permanent magnet generators. Part I: Modelling in dynamic simulation tools. Wind Eng. 2003, vol. 27, iss. 6, pp. 531–548. ISSN 0309-524X. doi: 10.1260/030952403773617490.

MICHAS, M. Control of Turbine-Based Energy Conversion Systems. PhD Thesis, 2018, vol. 2, pp. 1–156. [Online]. Available:

YANG, B., L. JIANG, L. WANG, W. YAO, and Q. H. WU. Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. Int. J. Electr. Power Energy Syst. 2016, vol. 74, pp. 429–436. ISSN 0142-0615. doi: 10.1016/j.ijepes.2015.07.036.

LAMNADI, M., M. TRIHI, B. BOSSOUFI, and A. BOULEZHAR. Modeling and control of a doubly-fed induction generator for wind turbine-generator systems. Int. J. Power Electron. Drive Syst. 2016, vol. 7, iss. 3, pp. 982–995. ISSN 20888694. doi: 10.11591/ijpeds.v7.i3.pp982-995.

SURYOATMOJO, H., A. M. B. ZAKARIYA, S. ANAM, A. MUSTHOFA, and I. ROBANDI. Optimal controller for doubly fed induction generator (DFIG) using Differential Evolutionary Algorithm (DE). In: 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA). 2015, pp. 159–164. ISBN 978-1-4799-7710-9. doi: 10.1109/ISITIA.2015.7219972.

AL ZABIN. O. and A. ISMAEL. Rotor Current Control Design for DFIG-based Wind Turbine Using PI, FLC and Fuzzy PI Controllers. In: 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA). 2019, pp. 1–6. ISBN 978-1-7281-5532-6. doi: 10.1109/ICECTA48151.2019.8959530.

ABDİ YONİS. S and Z. YUSUPOV. Dynamic Analysis of Current Loops Behavior in a Wind Turbine Based Doubly-fed Induction Generator. Eur. J. Sci. Technol. 2022, iss. 34, pp. 415–420. ISSN 2148-2683, doi: 10.31590/ejosat.1082326.

Full Text: