Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Nguyen Truong Khang
Van Lang University, Vietnam

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Nguyen Huu Khanh Nhan
Ton Duc Thang University, Vietnam

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Mitigation of Power Losses and Enhancement in Voltage Profile by Optimal Placement of Capacitor Banks With Particle Swarm Optimization in Radial Distribution Networks

Muhammad Fawad Shaikh, Abdul Majeed Shaikh, Shoaib Ahmed Shaikh, Raheel Nadeem, Abdul Moiz Shaikh, Arif Ali Khokhar

DOI: 10.15598/aeee.v20i4.4615


Abstract

The prime purpose of placing a capacitor bank in a power system is to provide reactive power, reduce power losses, and enhances voltage profile. The main challenge is to determine the optimum capacitor position and size that reduces both system power losses and the overall cost of the system with rigid constraints. For this purpose, different optimization techniques are used, for example Particle Swarm Optimization (PSO) which converges the complex non-linear problem in a systematic and methodological way to find the best optimal solution. In this paper, the standard IEEE 33-bus and 69-bus systems are used to find the optimum location and size of the capacitors bank. These power networks are simulated in Siemens PSS®E software. For the optimum solution of capacitor banks, the PSO algorithm is used. The PSO fitness function is modelled in such a way which contains the high average bus voltage, the small size of capacitor banks, and low power losses. The fitness function used is a weighted type to reduce the computation time and multi-objective function complexity.

Keywords


Capacitor bank; optimal placement; power losses; voltage profile and cost function.

Full Text:

PDF