Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Advanced Dispatching of a Wind Farm Based on Doubly Fed Induction Generators for the Improvement of LVRT Capability by the ADRC Approach

Hammadi Laghridat, Ahmed Essadki, Tamou Nasser

DOI: 10.15598/aeee.v20i4.4411


Abstract

This paper aims to explore a viable monitoring and management of active and reactive powers for a large-scale wind farm based on Doubly-Fed Induction Generators (DFIG) considering the voltage Fault-Ride-Through capability (FRT), especially Low-Voltage-Ride-Through (LVRT) capability by using a new control strategy, known as Active Disturbance Rejection Control. This strategy uses real-time estimation and compensation of the generalized "total" disturbance before it affects the system. The wind farm supervisory unit is used to coordinate the control of the powers production by the entire wind farm, which must take into account the couplings between each wind generator while producing the individual power commands. The turbine control units (local supervisory units) send the appropriate power references depending on the situation. This can be to produce the maximum power, to manage the active and reactive power given by the Transmission System Operator (TSO) or to meet the requirements of the grid code (LVRT capacity). However, to ensure the dispatching of the references of the active and reactive powers over the all wind generators of the wind farm and to satisfy the security of the power grid, we utilized mean of the proportional distribution algorithm.
The effectiveness of the proposed supervisory approach and control strategies are tested and validated through a multiples scenarios of simulations that are made under the MATLAB/Simulink Environment. The results obtained have demonstrated the efficiency and robustness of the control methods, and also the fact that they guarantee good performance and safety of the integration of wind farms into the grid while complying with the requirements of the grid code during power system faults.

Keywords


Wind Farm; Wind Generator; Supervisory; DFIG; LVRT; ADRC.

Full Text:

PDF