Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Nguyen Truong Khang
Van Lang University, Vietnam

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Nguyen Huu Khanh Nhan
Ton Duc Thang University, Vietnam

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Impact of Work Function Tunability on Thermal and RF Performance of P-type Window based Junctionless Transistor

Priyansh Tripathi, Narendra Yadava, Mangal Deep Gupta, Rajeev Kumar Chauhan

DOI: 10.15598/aeee.v20i1.4258


Abstract

The choice of gate metal technology for junctionless transistors needs to have diverse characteristics as metals have distinct work functions and hence, they show incompatibility while tailoring threshold of the device. In such a scenario, bimetallic stacked gate can be a promising candidate to present wide range of tunable work functions required for nano-regime junctionless transistors. This paper explores the electronic phenomena occurring at metal-metal interface and the impact of Platinum (Pt)/Titanium (Ti) bimetallic stacked gate-based work function tunability on the RF and thermal performances of p-type window-based Silicon on Insulator Junctionless Transistor (SOI JLT) using numerical simulator SILVACO ATLAS. The parameters considered for performance evaluation are ON-state current (I_{ON}), OFF-state current (I_{OFF}), I_{ON}/I_{OFF} ratio, transconductance (g_m),\linebreak cutoff frequency (f_T), Transconductance Frequency Product (TFP), Intrinsic Gate Delay (IGD), intrinsic gain (A_V), and Global Device Temperature (GDT). The g_m, f_T, TFP, A_V and GDT improve for modified over conventional in the ON state at higher work function, while IGD improves at lower work function. The improvements of 11.7% and 2.21% are obtained in maximum g_m and f_T, respectively, for modified transistor over conventional. The findings suggest that bimetallic stacked gate modified SOIJLT is a better option than conventional for low-power RF application.

Keywords


Bimetallic stacked gate; Junctionless Transistor (JLT); Radio Frequency (RF); Silicon-on-Insulator (SOI); thermal performance and tunable work function.

Full Text:

PDF