Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Nguyen Truong Khang
Van Lang University, Vietnam

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Nguyen Huu Khanh Nhan
Ton Duc Thang University, Vietnam

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam

Home Search Mail RSS

Qualitative Assessment of the UV Exposition Process Near the Diffraction Limits

Agnieszka Zawadzka, Kornelia Indykiewicz, Regina Paszkiewicz

DOI: 10.15598/aeee.v18i2.3723


In the presented work the technological parameters that influence the shape of the resist structures are reported. The experimental results are compared with the simulations results, based on the solution of Maxwell’s equations using the RF module of COMSOL Multiphysics software. The electric field intensity distribution in the resist layer was analyzed for the mask slits that are larger and comparable to the applied wavelength. The differences in wave energy absorption in the resist layer are presented and discussed. For both cases, the impact of the chromium film thickness of the mask on the pattern profile of the resist is studied and the comparison is performed between the simulation and experimental results.


UV exposition; diffraction limits; simulations


CUI, Z. Nanofabrication: Principles, Capabilities and Limits. Didcot: Springer, 2008 ISBN 978-0-387-75576-2.

OKAZAKI, S. Resolution limits of optical lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991, vol. 9, pp. 2829-2833. ISSN 0734-211X. DOI: 10.1116/1.585650.

LEVINSON, H. J., BRUNNER T. A. Current challenges and opportunities for EUV lithography. In International Conference on Extreme Ultraviolet Lithography. Monterey, SPIE, 2018, vol. 108090. ISSN 1996-756X. DOI: 10.1117/12.2502791.

TOTZECK, M., W. ULRICH, A. GÖHNERMEIER, W. KAISER. Semiconductor fabrication: Pushing deep ultraviolet lithography to its limits. Nature Photonics. 2007, vol. 1, iss. 11, pp. 629-631. ISSN 1749-4885. DOI: 10.1038/nphoton.2007.218.

BAEK, S., G. KANG, M. KANG, C.LEE, K. KIM. Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field. Scientific Reports. 2016, vol. 6, no. 30476, pp. 1–8. ISSN 2045- 2322. DOI: 10.1038/srep30476.

ALKAISI, M. M., R. J. BLAIKIE, S. J. MCNAB, R. CHEUNG, AND D. R. S. CUMMING. Sub-diffraction-limited patterning using evanescent near-field optical lithography. Applied Physics Letters. 1999, vol. 75, no. 22, pp. 3560-3562. ISSN 0003-6951. DOI: 10.1063/1.125388.

KANG, H., C. LEE, S. KIM, H. OH. Mask Error Enhancement Factor Variation with Pattern Density for 65 nm and 90 nm Line Widths. Journal of the Korean Physical Society. 2006, vol. 48, no. 2, pp. 246-249. ISSN 0374-4884.

NITHI, A., J. WUTTHINAN, A. CHUCKAPHUN, J. JIRAWAT, H. CHARNDET, P. AMPORN. The Influence of Chromium Film Thickness on Photomask on Light Transmission for 3D-Lithography Application. In German-Thai Symposium on Nanoscience and Nanotechnology. Chonburi, 2007, pp. 1-6.

LOZANOVA V., A Lalova, L Soserov and R Todorov. Optical and electrical properties of very thin chromium films for optoelectronic devices. Journal of Physics: Conference Series. 2014, vol. 514, iss. 012003, pp. 1-4. ISSN 1742-6588. DOI:10.1088/1742-6596/514/1/01200.

ZAWADZKA, A., J. PRAZMOWSKA, R. PASZKIEWICZ. Photolithographic Mask Fabrication Process Using Cr/Sapphire Carriers. Advances in Electrical and Electronic Engineering. 2019, vol. 17, no. 3, pp. 374-378. ISSN 18043119. DOI: 10.15598/aeee.v17i3.3357.

Full Text: