Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Electrodeposition of Cuprous Oxide on Boron Doped Diamond Electrodes

Miroslav Behul, Marian Vojs, Marian Marton, Pavol Michniak, Mario Kurniawan, Ralf Peipmann, Codruta Aurelia Vlaic, Andreas Bund, Robert Redhammer

DOI: 10.15598/aeee.v16i2.2778


Abstract

Nowadays, Cu_2O is very promising electrode material for photoelectrochemical applications. In this paper, we report on the controllable synthesis of Cu_2O single particles as well as compact layers on Boron Doped Diamond (BDD) electrodes using potentiostatic deposition in continuous and pulse mode. The BDD layers were prepared with different B/C ratios in the gas phase in order to investigate boron doping level influence on the Cu_2O properties. The effect of electrodeposition conditions such as deposition regime and pulse duration was investigated as well. The Cu_2O covered BDD electrodes were analysed by Scanning Electron Microscopy (SEM) and Raman spectroscopy. Improvement in the homogeneity of the electrodeposit and removal of clusters were achieved when the pulse potentiostatic regime was used. Using the same pulse electrodeposition parameters, we confirmed the possibility of controlling the deposition rate of Cu_2O by varying the BDD conductivity. Finally, we were able to scale the size of Cu_2O particles by changing the number of deposition pulses. The obtained results have shown a great potential of controlling the morphology, amount, size and distribution of Cu_2O films on BDD substrates by changing the boron doping level and electrodeposition conditions as well. The investigations reported herein allowed us to better understand the deposition mechanism of Cu_2O on BDD electrodes which could then be used for preparation of active layers for electrochemical applications and in optoelectronic devices such as solar cells and photodetectors.

Keywords


Boron doped diamond; cupric oxide; chemical vapor deposition; pulse plating.

Full Text:

PDF