Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Transient Fault Area Location and Fault Classification for Distribution Systems Based on Wavelet Transform and Adaptive Neuro-Fuzzy Inference System (ANFIS)

Ali Khaleghi, Mahmood Oukati Sadegh, Mahdi Ghazizadeh-Ahsaee, Alireza Mehdipour Rabori

DOI: 10.15598/aeee.v16i2.2563


Abstract

A novel method to locate the zone of transient faults and to classify the fault type in Power Distribution Systems using wavelet transforms and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) has been developed. It draws on advanced techniques of signal processing based on wavelet transforms, using data sampled from the main feeder current to extract important characteristics and dynamic features of the fault signal. In this method, algorithms designed for fault detection and classification based on features extracted from wavelet transforms were implemented. One of four different algorithms based on ANFIS, according to the type of fault, was then used to locate the fault zone. Studies and simulations in an EMTP-RV environment for the 25kV power distribution system of Canada were carried out by considering ten types of faults with different fault inception, fault resistance and fault locations. The simulation results showed high accuracy in classifying the type of fault and determining the fault area, so that the maximum observed error was less than 2%.

Keywords


Adaptive Neuro-Fuzzy Inference System (ANFIS); electrical distribution systems, fault classification; fault detection; fault location; wavelet transforms.

Full Text:

PDF