Helpdesk

Top image

Editorial board

Juraj Altus
University of Zilina, Slovakia

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
Slovak University of Technology, Slovakia

Frantisek Cvachovec
University of Defence, Czech Republic

Annraoi M de Paor
University College Dublin, Ireland

Milan Dado
University of Zilina, Slovakia

Zdenek Divis
VSB - Technical University of Ostrava, Czech Republic

Petr Drexler
Brno University of Technology, Czech Republic

Pavel Fiala
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Valeria Hrabovcova
University of Zilina, Slovakia

Gokhan Hakki Ilk
Ankara University, Turkey

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Vladimir Kasik
VSB - Technical University of Ostrava, Czech Republic

Matej Kavacky
Slovak University of Technology, Slovakia

Jan Kohout
University of Defence, Czech Republic

Pavel Koktavy
Brno University of Technology, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Igor Piotr Kurytnik
University of Bielsko-Biala, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Luigi Martirano
University of Rome "La Sapienza", Italy

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Ibrahim Taner Okumus
Sutcu Imam University, Turkey

Milos Orgon
Slovak University of Technology, Slovakia

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Pavel Vaclavek
Brno University of Technology, Czech Republic

Martin Vaculik
University of Zilina, Slovakia

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Vladimir Vasinek
VSB - Technical University of Ostrava, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Otakar Wilfert
Brno University of Technology, Czech Republic

Jan Zidek
VSB - Technical University of Ostrava, Czech Republic


Home Search Mail RSS


Optimum Performances for Non-Linear Finite Elements Model of 8/6 Switched Reluctance Motor Based on Intelligent Routing Algorithms

Chouaib Labiod, Kamel Srairi, Belkacem Mahdad, Abderrahmane Dib, Mohamed Toufik Benchouia, Mohamed El Hachemi Benbouzid

DOI: 10.15598/aeee.v15i1.1906


Abstract

This paper presents torque ripple reduction with speed control of 8/6 Switched Reluctance Motor (SRM) by the determination of the optimal parameters of the turn on, turn off angles Theta_(on), Theta_(off), and the supply voltage using Particle Swarm Optimization (PSO) algorithm and steady state Genetic Algorithm (ssGA). With SRM model, there is difficulty in the control relapsed into highly non-linear static characteristics. For this, the Finite Elements Method (FEM) has been used because it is a powerful tool to get a model closer to reality. The mechanism used in this kind of machine control consists of a speed controller in order to determine current reference which must be produced to get the desired speed, hence, hysteresis controller is used to compare current reference with current measured up to achieve switching signals needed in the inverter. Depending on this control, the intelligent routing algorithms get the fitness equation from torque ripple and speed response so as to give the optimal parameters for better results. Obtained results from the proposed strategy based on metaheuristic methods are compared with the basic case without considering the adjustment of specific parameters. Optimized results found clearly confirmed the ability and the efficiency of the proposed strategy based on metaheuristic methods in improving the performances of the SRM control considering different torque loads.

Keywords


Finite elements method; parameters optimization; particle swarm optimization; steady state genetic algorithm; switched reluctance motor; torque ripple reduction.

Full Text:

PDF