Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Nguyen Truong Khang
Van Lang University, Vietnam

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Nguyen Huu Khanh Nhan
Ton Duc Thang University, Vietnam

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Multiple Frequencies in the Basal Ganglia in Parkinson's Disease

Clare M. Davidson, Annraoi M de Paor, Madeleine M. Lowery

DOI: 10.15598/aeee.v13i3.1363


Abstract

In recent years, the authors have developed what appears to be a very successful phenomenological model for analyzing the role of deep brain stimulation (DBS) in alleviating the symptoms of Parkinson's disease. In this paper, we extend the scope of the model by using it to predict the generation of new frequencies from networks tuned to a specific frequency, or indeed not self-oscillatory at all. We have discussed two principal cases: firstly where the constituent systems are coupled in an excitatory-excitatory fashion, which we designate by ``+/+''; and secondly where the constituent systems are coupled in an excitatory-inhibitory fashion, which we designate ``+/-''. The model predicts that from a basic system tuned to tremor frequency we can generate an unlimited range of frequencies. We illustrate in particular, starting from systems which are initially non-oscillatory, that when the coupling coefficient exceeds a certain value, the system begins to oscillate at an amplitude which increases with the coupling strength. Another very interesting feature, which has been shown by colleagues of ours to arise through the coupling of complicated networks based on the physiology of the basal ganglia, can be illustrated by the root locus method which shows that increasing and decreasing frequencies of oscillation, existing simultaneously, have the property that their geometric mean remains substantially constant as the coupling strength is varied. We feel that with the present approach, we have provided another tool for understanding the existence and interaction of pathological oscillations which underlie, not only Parkinson's disease, but other conditions such as Tourette's syndrome, depression and epilepsy.

Keywords


Computational model; control theory; Parkinson's disease; pathological oscillations.

Full Text:

PDF