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Abstract. This paper documents the research towards
the analysis of different solutions to implement a Neu-
ral Network architecture on a FPGA design by using
floating point accelerators. In particular, two different
implementations are investigated: o high level solution
to create a neural network on a soft processor design,
with different strategies for enhancing the performance
of the process; a low level solution, achieved by a cas-
cade of floating point arithmetic elements. Compar-
isons of the achieved performance in terms of both time
consumptions and FPGA resources employed for the
architectures are presented.
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1. Introduction

Field Programmable Gate Arrays (FPGA) designs are
very common in the field of computational electronics
[, [2], |3]. Digital Signal Processing (DSP) models,
often analyzed in high level environments, show heavy
restraints on performance once implemented on embed-
ded systems whose bottleneck is, despite the ongoing
advances in Floating Point Units (FPU) development,
the low floating point operations per second (FLOPS),
[4]. Compared to a microcontroller implementation
(based on the sequential execution of instructions by
the CPU) the nature of an FPGA design exploits the
concepts of customization and parallelization to en-
hance the throughput of a computational system [5].
Customization allows the designer to create, through
Hardware Description Language (HDL), the internal
architecture of the system down to Register Transfer
Level (RTL), defining as a matter of fact a flexible

Application Specific Integrated Circuit (ASIC). Par-
allelization spreads modular and sequential algorithms
on a parallel interface, improving the throughput of
complex algorithms by a multiplicative factor [6].

Neural Networks in embedded systems are frequently
implemented on microcontroller units [7], [8]. A neu-
ral network implementation on a microcontroller, even
when built with simple integer arithmetic, lacks the
performance enhancement of a parallel design [9]. The
choice of implementing a neural network architecture
on FPGA benefits from customization and paralleliza-
tion in different ways.

Very large Feed Forward Neural Networks (FFNN),
especially if designed to work with floating point (FP)
precision, performs a large number of elementary prod-
ucts and sums. Moreover, for each neuron of FFNN
within the hidden layers, a non-linear function com-
putation is required to determine the activation value
of the neuron. Without dedicated FP hardware such
computations can hinder the whole performance of the
system, hence making the design difficult to be used in
critical applications like real-time control systems [10].

In literature different approaches have been followed
to reduce the computational cost of this particular
activation function, using piecewise linear interpola-
tion [II], polynomial fitting techniques [12], [13], [14],
[15], enhanced computational algorithms [16], [I7] and
Look-Up Tables [18], [19], [20], [20], [2I]. In this way,
customization allows the designer to implement blocks
inside the FPGA to speed up the calculus of FP oper-
ations.

The concept of parallelization is implicit in the high
performance of the solutions explained above: a RTL-
defined LUT can compute an arbitrarily complex op-
eration in few clock cycles, assuming the memory of
the system can contain the values. The same can be
said for the arithmetic units, which can exploit pow-
erful pipelines to speed up the calculus. The num-
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ber of interconnection between the neurons, however,
grows exponentially with the size (in terms of input
and outputs) of the network. It’s possible to reduce
the complexity of the FFNN by splitting a Multiple
Input Multiple Output (MIMO) FFNN into a smaller
and simpler Single Input Single Output (SISO) FFNN
that can be easily processed in parallel by means of
multivariate function decomposition [22], [23].

2. The Feed Forward Neural
Network

The Feed Forward Neural Network implemented in this
paper is a SISO Feed Forward Neural Network, com-
posed by a single hidden layer of 10 neurons with a non-
linear activation function Logsig (Eq. [1)) and\or Tansig

(Eq. :

1
act = W, (1)
2
act = Tt (2)

This architecture was chosen for the easiness of the
training process and the modularity of the structure:
indeed it is possible to face MIMO problems by using
SISO FFNN as described in [22]. The FFNN was cre-
ated and trained in Matlab®) environment. The nor-
malization of the inputs and outputs was disabled and
the activation function of the output layer was a pure
linear function.

3. Implementation on Nios
I1/f Soft Processor

The first solution attempted to implement the network
on FPGA makes usage of the soft core processor Nios
I1/f, released by Altera® as a crypted core. This core
can be synthesized with as low as 1600 logic elements
(LE) and supports a maximum frequency of 140 MHz
241, [25].

After synthesis and programming on the FPGA de-
vice, the soft core itself can be programmed and de-
bugged in C using a JTAG tool chain running inside an
Eclipse environment. This soft core processor supports
hardware integer multiplication and division, and up
to 255 custom instructions definable by the designer.
These custom instructions can be defined at RTL level
using Very High Speed Integrated Circuits (VHSIC)
Hardware Description Language (VHDL) or Verilog®
code, and are synthesized as parallel blocks of the in-
ternal Nios II Arithmetic Logic Unit (ALU) as shown
in Fig. [l} when a custom instruction is called from the
instruction memory of the Nios II, the operands are

transferred in the custom logic and, according to the
type of custom instruction (combinatorial or sequen-
tial) the result is collected after a definite number of
clock cycles [26].

\

Nios Il
ALU

Result

Fig. 1: Implementation of custom logic in the Nios IT ALU.

3.1. Overall System Description

The design proposed in this section is based on the Nios
I1/f core, modified to have a Floating Point ALU and
two system works with a 100MHz clock, which is repli-
cated by means of a PLL with a phase shift of —3 ns
to control an external 8 Mb SDRAM [27]. As shown
in Fig. |2 the processor was equipped with a standard
JTAG interface for programming and a Performance
Counter to determine the execution time of the imple-
mented code. The Floating Point ALU was the stan-
dard block from the library released by Altera®) as a
part of the Quartus II®) environment. Two Activation
Function LUT(s) were created in VHDL (one for the
Tansig and one for the Logsig) and imported into the
design as user-made custom instructions.

3.2. LUT(s) Use for Computing

Activation Function

The main performance bottleneck for neural networks
using floating point arithmetic lies in the activation
function computation for the hidden layer. Computing
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Fig. 2: Soft processor and Peripherals.

this function using "full precision" software functions
is often too slow for time critical applications [28]. In-
stead of calculating the activation function, an alterna-
tive solution is to sample it, loading the obtained values
in a LUT [I8], [19], [20], [21]. In the present paper, the
function was not sampled with a uniform and constant
spacing between the sampling points. This is because
the activation function assumes almost constant val-
ues near the saturation points, making it wasteful to
choose a fine sampling in their proximity. On the other
hand, near the origin, the slope of the function is very
high, and a finer sampling may help in reducing quan-
tization error. In [19] only two kinds of spacing are
used: a fine one, near the origin, and a wide one, near
the saturation branches. In this work, a different ap-
proach is proposed: the distance between a sample and
the following one is inversely proportional to the slope
of the function in the sampled point.

This yields a finer sampling near the origin, grad-
ually getting wider near the saturation points. The
Logsig function was sampled with 256 values between
—16 and +16, while the Tansig, being an odd func-
tion, was sampled for positive arguments only, with 256
values between 0,2 and. Using these values, a VHDL
combinatorial code was written and simulated in Al-
tera ModelSim environment for RTL analysis.

The implemented block has a single floating point
input, that is split in sign, exponent and mantissa.
Through the use of a suitable IF-THEN-ELSE chain
the input value addresses a specific entry in the LUT,
that is propagated as output. If the input value mag-
nitude is bigger than the saturation values, a suitable

constant value is propagated as output. Since the Tan-
sig, near the origin, can be approximated to the bi-
sector of the first quadrant, values smaller than 0,2
are directly propagated in output (thus approximat-
ing the function linearly). The synthesis result of this
IF-THEN-ELSE structure is a very long chain of com-
parators. Propagation of the signal through this chain
can be long, so a tunable delay of 4 clock cycles was
introduced to ensure result stability (the delay is con-
trolled by a simple counter that can be modified to suit
the size of the LUT).

3.3. Polynomial Fitting

The basic operations of floating point math are greatly
fastened by the presence of a Floating Point ALU
(about 10 times faster [29]). Thus, other than speeding
up the Multiplier-Accumulation part of the FENN, this
hardware module can be used to compute a polynomial
approximation of the activation function. A group of
second-degree polynomials was chosen to fit the activa-
tion functions. The coefficients of the polynomials were
determined in Matlab® environment through the use
of the Curve Fitting Tool. Both the functions were
fitted only for positive arguments.

For the Logsig polynomial fitting, a function (de-
noted as 5PY-L) composed by the superposition of
5 second-degree polynomials, has been implemented.
Even if the Logsig function is not odd, a partial sym-
metry is present. This was exploited for its negative
arguments: first, the value of the function is calculated
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Fig. 3: NN Core schematic diagram.

Tab. 1: Nios II/f test results on FFNN with Logsig activation

Address

Tab. 2: Nios II/f test results on FFNN with Tansig activation

functions. functions.
Function MSE Average time/sample Function MSE Average time/sample
Floating Point | 0.0000 (ref) 650 ps Floating Point | 0.0000 (ref) 715 us
LUT (Logsig) 0.1598 17.5 us LUT (Tansig) 0.0053 17.5 us
5PY-L 0.0075 185 us 4PY-L 0.0039 142 us
5PY-L 0.0018 174 us

considering the absolute value of the input; then, if the
input is negative, the calculated value is subtracted by
the value of 1. For the Tansig polynomial fitting, two
functions, composed by 4 and 5 second-degree poly-
nomials have been implemented, respectively denoted
as 4PY-T and 5PY-T. This time, since the Tansig is
an odd function, the argument is considered in abso-
lute value, and the sign is directly propagated to the
output.

3.4. Test Results and Considerations

The design was used to simulate a FFNN trained on
the function y = 22, and was tested on a vector of 2048
linearly spaced inputs between —5 and +5. The results
in Tab. [T[Jand Tab. 2] show the performance in terms of
mean squared error (MSE) and execution time of the
different solutions proposed above. As a reference for
execution time, the performance of a FFNN featuring a
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full precision software implementation of the activation
function is shown in both tables.

4. NN Core Implementation

In the following part of this paper a solution based
on low level architecture is presented. The proposed
design was used for the implementation of the same
FFNN previously described.

4.1.  Overall System Description

The proposed design is an arithmetic core composed
(see Fig. [3)) by high performance floating point arith-
metic blocks developed by Altera®), whose data flow is
controlled by a Finite States Machine (FSM) written in
VHDL. The arithmetic core is composed by 3 blocks: a
multiplier-accumulator (MAC), an activation function,
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Fig. 4: MAC block diagram.
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Fig. 5: Logsig block diagram.

and a feedback RAM. These three blocks constitute a
suitable base to build a Neural Network [30]. The first
block computes, for each neuron, the weighted sum of
the inputs.

The second block has the results of the first block
as inputs, and computes the activation values for the
hidden layer. The third block, receiving the output
from the activation function block, stores the values
from the hidden layer. These values are then sent
through a MUX back into the MAC block for the out-
put layer computation. Both input and output data of
the FFNN are stored in RAM blocks that are acces-
sible through JTAG interface using the Quartus II®
software. The whole Core and the data banks are con-
trolled by a free running 2-Process Finite State Ma-
chine “Time Machine” using data flow control signals
and address registers. Internal data flow of the core is
regulated by a number of 32-bit wide MUXes and D-
Type Flip Flops (DFFs). The design was implemented
on a EP2C20F484C7 Cyclone II FPGA mounted on a
DE2 — Development Board. After synthesis and fit-
ting the full design occupied about 5000 logic elements
(LE) and all the 52 hardware multipliers present on the
FPGA.
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4.2. Data Flow of the Arithmetic

Core

The computation of the arithmetic core begins by load-
ing the first sample from the Input Data Bank into the
MAC block. The core contains into its internal mem-
ory the weights and biases of the FFNN. This mem-
ory is addressed directly by the Time Machine control
block. Since the MAC is computing the hidden layer,
each neuron will have a bias value that must be added
to the weighted input. This bias value is preloaded
into the 32-bit DFF accumulator using the Bias MUX.
Inputs and weights are multiplied and the results are
added to the preloaded bias (see Fig. . Since the hid-
den layer has only one input, the MAC is done for the
first neuron, and the result is propagated to the next
block, where the activation function is computed. In
this section, a logical not is operated on the MSB of the
input, changing its sign. The result is sent to an expo-
nential arithmetic block whose output is connected to
an adder that sums the result to the constant value of
1.

The result is then inverted and the activation value
of the first neuron is finally written in the Feedback
RAM. This operation is repeated for the 10 neurons,
filling the RAM with the activation values of the hid-
den layer. Then, the Time Machine switches the Layer
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Tab. 3: Best performance comparison.

Function MSE Average time/sample | Full Time (2048 Samples)
NN Core (50 MHz clock) | 0.0000 (ref) 154 us 315.4 ms
NN Core (100 MHz clock) 0.0000 78 ps 159.8 ms
5PY-L 0.0075 185 ps 378.8 ms
LUT (Tansig) 0.0054 17.5 ps 35.79 ms
Tab. 4: Nios II/f design main resources usage by entity.
Entity LC Comb. | LC Reg. | DSP Elements

Nios IT CPU 2382 1799 4

Floating Point Unit 5125 3783 7

LUT (Tansig) 1815 4 0

LUT (Logsig) 1617 4 0

Select MUX so that the MAC block is now connected
to the Feedback RAM. The bias of the output neuron is
preloaded in the accumulator, and the MAC computes
the weighted sum of all the activation values from the
hidden layer. This is the output result of the network,
and is saved in the Output Data Bank.

4.3. Time Machine FSM

Data processing from input to output needs to be man-
aged by some sort of control block, responsible for
synchronizing the dataflow and, were needed, perform
memory addressing. In a traditional programming lan-
guage, like C, a popular approach to create such con-
troller is to use a finite state machine (FSM). In its
simplest form, a FSM is a set of code blocks, each
identifying a particular function (e.g. "load data from
RAM", "sum input A and input B", "transpose array
C"), inside a switch/case structure. If the FSM is the
sole controller of the system, the switch/case structure
is confined in an endless loop. The variable controlling
the switch is updated at the end of each code block,
ensuring that every time the switch/case is evaluated
the FSM will execute a specific code block (i.e. will
be in a known and definite state). This rather simple
approach is not as straightforward in HDL languages,
since the code is not executed by a processor, thus not
inherently sequential.

Hardware, emulating the processor sequential be-
haviour, must be created. A possible approach, pro-
posed in [31], is to create an instruction counter whose
value is increased at every clock edge. By using a net of
comparators, when a particular value is assumed by the
instruction counter, specific logic functions (states) are
executed. Creating the FSM in this way grant an im-
portant advantage: since the instruction counter is up-
dated on clock edge, the FSM can work synchronously
with the other elements in the design. This is very
important when some blocks in the design have defi-
nite input-output delays, since the FSM can be pro-

(© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

grammed to remain in a "wait" state until the output
is ready to be propagated to the next block. In VHDL
this architecture can be defined by the use of two code
blocks (processes), one sequential and one combinato-
rial.

The first one is responsible for the instruction
counter increase at every clock edge, and is synthesized
with a counter register. The second one is responsible
for decoding the instruction counter into actual logic
signals, and is synthesized with a network of compara-
tors. The cycle of operations performed by the FSM is
obviously limited, once the last operation is performed
(i.e. the last output value has been loaded in the Out-
put Data Bank), the FSM will reset and start over.
With a 50 MHz clock, the computation of a single sam-
ple takes about 150 ps.

5.  Solutions Comparison

In the Tab. [3] a comparison of the best performances
among solutions is presented. At full precision, the NN
Core design provides a quite lower computation time
than the Nios II design. Moreover, by doubling the
clock frequency through a PLL (thus using the same
frequency used for the Nios II designs, 100 MHz) the
computation time drops at 78 us/sample. However, if
full precision is not needed (and the choice of a par-
ticular activation function is not mandatory), imple-
menting a FFNN based on a Tansig activation func-
tion yields the lowest computation time, using the Nios
IT design. In particular, implementing a LUT yields
the best results in terms of precision over computation
time.

In Tab. [4 and Tab. [f] the resources, in terms of ded-
icated Combinatorial and Register logics (LC Comb.
and LC Reg.) are shown. The high level solution is-
expensive in terms of resources usage, peaking with
15 098 logic elements (LE) if both the LUT(s) are im-

35



THEORETICAL AND APPLIED ELECTRICAL ENGINEERING

VOLUME: 12 | NUMBER: 1 | 2014 | MARCH

Tab. 5: Best performance comparison.

Entity LC Comb. | LC Reg. | DSP Elements
MAC Block 1015 620 7
Tansig Block 2784 1874 45
FSM Block 205 130 0
plemented as custom instructions. This is generally not Acknowledgment

necessary, since only one of the activation functions is
used in the network. By excluding the Logsig LUT
from the synthesis the LE usage drops to 12 699 LE.
The low level solution, although completely saturating
the DSP blocks of the FPGA, is contained in 5 037 LE.

6. Conclusions and Future

Works

Two possible designs to implement a neural network
in a FPGA environment were presented. The first de-
sign, taking advantage of the Nios II soft processor,
used hardware accelerators to speed up both the cal-
culus of the elementary products of neurons and the
computation of the nonlinear activation functions for
the hidden layer. By exploiting the soft processor hard-
ware acceleration for floating point operations, an al-
ternative polynomial approximation for the activation
functions was implemented and tested for performance.

The second design proposed is composed by a chain
of arithmetic units timed and coordinated by a VHDL
state machine, which implemented a full precision
floating point computation at a fraction of the exe-
cution time. The results acquired from this work can
advance into a new form of neural network implemen-
tation on FPGA. The low level arithmetic chain im-
plemented in the NN Core design could be split and
included inside two custom instructions of a soft pro-
cessor, hence combining the speed of the low level de-
sign with the flexibility of a C-programmable environ-
ment. This could benefit the design by allowing the
inclusion of standard interfaces (like JTAG or 12C) to
the system useful for many applications (see for exam-
ple [32], [33]), while retaining RTL-wise control of the
data flow.

In the hypothesis of using the network as a form
of DSP for smart sensor or control systems, the float-
ing point precision could be traded for a faster and
smaller fixed-point or integer based system [34], [35].
Moreover, an improvement of the whole system can be
always obtained if more complex and robust optimiza-
tion algorithms [36], [37] are used in order to reduce
the size of the implemented Neural Networks.
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