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Abstract. The paper deals with the problem of test fre-
quency selection for multi-frequency parametric fault
diagnosis of analog linear circuits. An appropriate set
of test frequencies is determined by minimizing the con-
ditionality of the sensitivity matrix based on the system
of fault equations using a global stochastic optimiza-
tion. A novel method based on the Particle Swarm Op-
timization, which provides more accurate results and
improves the convergence rate, is described. The paper
provides several practical examples of its application to
test frequency selection for active RC filters. A com-
parison of the results obtained by the proposed method
and by the Genetic Algorithm is also presented.
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1. Introduction

Nowadays, continuing miniaturization of modern elec-
tronic devices leads to more complex circuits and sys-
tems. The testing process has become more difficult
and the cost of testing is still increasing. In the case
of analog circuits the testing represents a much more
complex problem in comparison with digital ones due
to the behaviour of analog signals. To reduce test costs
a development of new robust methods for Automatic
Test Plan Generation (ATPG) for analog circuits is one
of the main objective in this area [1].

Analog faults can be classified into several classes,
e.g. manufacturing tolerances, soft, hard and catas-
trophic faults, depending on the deviation of network
parameters from their nominal values [2]. The multi-
frequency parametric fault diagnosis is a technique for
estimating the actual values of some network parame-
ters from measurements of network characteristics in

the frequency domain [3]. The circuit components,
whose parameters exceed the allowed tolerance inter-
vals, are classified as faulty.

An arbitrary network function of lumped linear time-
invariant analog circuit can be expressed as:

H(s,p) =
an(p)sn + · · ·+ a0(p)

bm(p)sm + · · ·+ b0(p)
, (1)

where s is the complex frequency, and the polynomial
coefficients ai and bi are nonlinear functions of network
parameters p = [p1, . . . , pR]T .

The actual values of unknown network parameters
can be estimated based on the measurements of one or
more different network functions at several frequencies
[2]. In the case of one excitation source, each network
function corresponds to one test point. From a mathe-
matical point of view, the parameter estimation repre-
sents solving the set of nonlinear fault equations based
on the network function Eq. (1):

Hk(jωk,i,p) = Mk,i, (2)

where Hk represents the k-th network function with
respect to the k-th test point selected, and Mk,i are the
measurements of the k-th network function on the i-th
test frequency. The system can be solved for example
using the Newton-Raphson iteration method.

The set of tested parameters pt ∈ p, i.e. the un-
knowns in Eq. (2), must be selected beforehand. The
remaining components are considered to have a pri-
ori known (nominal) values. A proper selection of test
point(s) and test frequencies is of cardinal importance
for a robust solution of Eq. (2).

As an analog circuit consists of different types of
components (resistors, capacitors, inductors, etc.), the
individual network parameters have different physical
units and their nominal values are spread over a wide
range of magnitudes. Then, the Jacobian (sensitivity)
matrix associated with the system of fault equations
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Eq. (2) contains mutually incomparable elements. It
causes that the matrix is ill-conditioned and the fault
diagnosis may return non-relevant results. To over-
come the problem, the set of equations Eq. (2) should
be formulated using the normalized network parame-
ters p̃

p̃ =
p

pnom
, (3)

where p is the original value and pnom is the nominal
value [4].

The process of parametric fault diagnosis can be di-
vided into two independent phases. The first phase,
called testability analysis, determines which network
parameters can be identified based on the selected test
point(s). The maximum number of testable network
parameters is referred to as the testability degree T [3].
The testability is associated with the solvability degree
of the system of fault equations Eq. (2). In the case of
one test point, the solvability is given as the rank of the
Jacobian matrix associated with the system Eq. (2):

T = rank

[
∂H(jωi)

∂p̃j

]
. (4)

Theoretically, the testability degree of a circuit is
independent of the fault localization method, the nom-
inal values of network parameters and the selected set
of test frequencies [5].

The set of linearly dependent columns of the Jaco-
bian matrix determines ambiguity groups [6]. In these
groups the effects of individual network parameters on
the network function are indistinguishable from one an-
other. For example, two resistors in series create such a
group. Only some parameters of the ambiguity group
can be estimated independently. The remaining pa-
rameters must be considered to be fixed.

When the total number of potentially faulty param-
eters is greater than the testability degree T or when
the parameters being tested belong to the same am-
biguity groups, the system of fault equations has no
unique solution and the set of test points should be
extended.

The second phase consists in solving the system of
fault equations Eq. (2) to obtain the actual values of
unknown network parameters. However, in the real
fault diagnosis, the system is always perturbed by er-
rors and for this reason the diagnosis may return non-
relevant results. For example, the ill-conditioned sys-
tem of equations is prone to large numerical errors of
the solution, in the case of the uncertainty of fixed
(untested) network parameters, the final solution is
mathematically correct but the estimated values of
tested network parameters may not correspond to their

actual ones, the measurement of weak signals, e.g. in
stop bands of analog filters, as well as the measure-
ment at high frequencies is usually more problematic.
Fortunately, all these errors can be minimized by an
appropriately chosen set of test frequencies [3].

However, an optimal method for test frequency se-
lection has not been determined yet. The methods
based on maximizing the sensitivities of tested net-
work parameters in the frequency domain [7] may lead
to closely-spaced frequencies for example for band-
pass filters, i.e. the system of fault equations is ill-
conditioned. The method using interval analysis [8]
takes into account the uncertainty of fixed network pa-
rameters, but the method is applicable only for diag-
nosis of catastrophic faults, i.e. soft faults can not
be diagnosed. The simple heuristic solution [9] based
on fixed relations between individual test frequencies
is computationally very inexpensive, but the method
may not be optimal in general and it can be applicable
only to specific simple circuits. On the other hand, the
genetic optimization method proposed in [9] discretizes
the solution, the computational demands are very high
and the algorithm converges slowly.

The procedure for test frequency selection proposed
in this paper is based on the modified Particle Swarm
Optimization (PSO). Section 2 of this paper deals with
the mathematical background of the method and Sec-
tion 3 provides several application examples for analog
frequency filters.

2. Test Frequency Selection

The selected set of test frequencies should minimize
the sensitivity of the solution of Eq. (2) to the numeri-
cal errors, uncertainty of fixed network parameters and
measurements errors. The proposed method is based
on the measure introduced in [9]. The error of the
perturbed system of fault equations Eq. (2) as well as
the convergence rate of the Newton-Raphson iteration
method are taken into account in the measure formu-
lated in the form:

E = ln
(
(cond(J)− 1) ‖J−1‖2

)
=

= ln

(
σmax − σmin

σ2
min

)
, (5)

where cond(J) is the condition number of the Jaco-
bian matrix J associated with fault equations Eq. (2),
σmax and σmin are the maximum and minimum singular
values of J. The minimizing of E leads to minimizing
the conditionality of the Jacobian matrix and maximiz-
ing the sensitivities to unknown network parameters,
which is represented by ‖J−1‖2 in Eq. (5).
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The system of fault equation Eq. (2) with a small
E is well-conditioned while a large E leads to an ill-
conditioned problem. The computational complexity
of Eq. (5) is given by the complexity of singular value
decomposition. The Jacobian matrix itself can be ob-
tained by repeatedly solving the adjoint sensitivity net-
work [14] for each test frequency.

The minimization of E represents a complex prob-
lem with many local optimums. The use of the Genetic
Algorithm (GA) was reported in [10]. The main dis-
advantage of the method is the discretization of the
solution dependent on the bit representation of chro-
mosomes and very slow convergence rate in the order
of hundreds of steps, i.e. high computational cost. The
proposed solution is based on the Particle Swarm Opti-
mization (PSO) [11], [12]. The main advantages of the
method are the high convergence rate, no discretization
of the solution and a very easy implementation.

The particle swarm consists of individual agents,
which move randomly in a u-dimensional space, where
u is the number of test frequencies and is the same as
the number of unknown parameters in Eq. (2) for only
magnitude measurements. The position of each agent
is associated with one set of test frequencies. The fit-
ness function E is evaluated for each agent in each
iteration step. During the optimization the agents are
moving towards to the global optimum.

The agent speed vn+1 ∈ Ru in the next iteration
step is given as:

vn+1 = wnvn+c1r1(xpers−xn)+c2r2(xglob−xn), (6)

where wn is the inertia weight in the current step, vn is
the actual speed, c1 and c2 are the weight coefficients
of optimization, xpers and xglob are the coordinates of
personal and global optimums found so far, xn is the
actual position of agent, and r1 and r2 are random
numbers with the uniform distribution from the inter-
val < 0, 1 > generated in each iteration.

When the inertia weight w is too high, the position
of each agent can oscillate around the global optimum
in the final phase of optimization. Reducing w during
the optimization can overcome the problem [12].

The new position of each agent xn+1 is:

xn+1 = xn + ∆tvn+1, (7)

where ∆t is the time step. Choosing ∆t < 1 helps
to damp the oscillations of agents around the global
optimum.

At the beginning of optimization it is necessary to
use a large number of agents to preserve the robustness
of the process. During the optimization, agents move

closer to the global optimum and it is unnecessary to
evaluate the fitness function for all the agents used at
the beginning. Therefore agents with high values of E
are removed. This approach can significantly speed-up
the final phase of optimization.

Since network functions are better represented in the
logarithmic frequency scale and the core of PSO works
well on the linear scale, it is advantageous to introduce
the transformation of coordinates:

fi = fL exp

(
xi ln

fH
fL

)
, (8)

where xi is the agent position in the space of opti-
mization coordinates, fi corresponds to the actual test
frequency, and fL and fH define the frequency interval
of interest. Some areas of the search space may repre-
sent an unfeasible solution. To keep the swarm in the
feasible area, use can be made of absorbing, reflecting
or invisible walls [12]. The authors in [11] state that
the invisible walls may produce a little better results.

The fitness function E does not depend on a particu-
lar ordering of individual test frequencies. An example
for u = 2 is shown in Fig. 1. For this reason, the red
points correspond to the same set of test frequencies.
Then, the agents can be restricted to the area where
x1 < x2 < .... < xu. Restricting the search space leads
to a smaller required number of agents, i.e. less com-
putational demands.

Fig. 1: Principle of test frequency set mirroring.

3. Application Examples

The method was applied to three benchmark active
RC filters [10] and the results were compared with the
results obtained using GA.

The following parameters of PSO according to the
recommendations in [11] and [12] were used:

• Initial number of agents: 12, 26, 50.

• Final number of agents: 10.

• Time step: ∆t = 0, 1.

• Weight factors: c1 = 2, c2 = 2.
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• Inertia weight: w = 0, 9−0, 4 (linearly decreased).

• Search space {x | 0 ≤ x1 ≤ x2 ≤ · · · ≤ xu ≤ 1}
i.e. frequency interval {f | 1 Hz ≤ fi ≤ 10 kHz}.

The first example is the Tow-Thomas second-order
band-pass filter shown in Fig. 2. The filter is tuned to
the resonant frequency f0 = 1,6 kHz with the quality
factor Q = 10. The frequency response of the filter is
shown in Fig. 3. The nominal values of components
are R1 = 10 kΩ, R2 = R3 = R4 = R5 = R6 = 1kΩ,
C1 = C2 = 100 nF, with the ideal operational ampli-
fiers being used in the analysis. Only one test point,
which corresponds to magnitude measurements of V2,
was chosen. The testability degree T is equal to 3 and
the same testable group (R1, R4, C1) was considered
as in [10]. To determine these three unknown network
parameters it is necessary to determine three test fre-
quencies minimizing the E measure Eq. (5).

Fig. 2: Tow-Thomas band-pass filter.

As it can be seen in Fig. 4 the PSO method found,
after approximately 30 iteration steps, the following so-
lution: f1 = 1149 Hz, f2 = 1592 Hz and f3 = 4826 Hz
(E = −1, 50). The progress of the optimization for
different initial numbers of agents is also presented.
In the case of 50 agents, the optimization converged
quickly, but it took the longest time due to the num-
ber of agents. The results are similar to the case of
26 agents. When only 12 agents are used, the speed
of convergence is reduced. The optimization took the
least time, but the algorithm may not find the appro-
priate global optimum.

The same optimization problem was solved using the
basic GA with elitism and mutations [13]. In this case,
the following optimization parameters were used:

• Chromosome representation: 16 bits.

• Number of individuals: 12, 26, 50.

• Elitism: 2 individuals.

• Probability of mutation: 5 %.

• Frequency interval {f | 1 Hz ≤ fi ≤ 10 kHz}.

Fig. 3: Frequency response of Tow-Thomas filter.

Fig. 4: Convergence of PSO optimization (Tow Thomas).

The results of GA are shown in Fig. 5. The speed of
convergence is lower (approximately 3 times) than the
results obtained by PSO. When a small number of bits
in chromosome representation of frequency are used,
the results may be inaccurate. A large number of bits
reduce the speed of convergence.

Fig. 5: Convergence of GA optimization (Tow-Thomas).

The second example is the second-order low-pass fil-
ter shown in Fig. 6. For nominal values of components
R1 = 5,01 kΩ, R2 = 10 kΩ, R3 = 33,8 kΩ, R4 =
200 kΩ, R5 = 29,2 kΩ, R6 = 100 kΩ, C1 = 47 nF and
C2 = 0,47 nF the filter is tuned to the center frequency
f0 = 1,9 kHz with the quality factor Q = 1,4. as shown
in Fig. 7.
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Fig. 6: Second-order low-pass filter.

One test point corresponding to magnitude measure-
ments of V2 was considered. The testability degree T
is equal to 3. When proceeding as in [10] the same
suitable testable group (R6, C1, C2) was chosen.

Fig. 7: Second-order low-pass filter frequency response.

After approximately 15 iteration steps, PSO found
the following frequencies: f1 = 4,7 Hz, f2 = 1663 Hz
and f3 = 8472 Hz (E = −0, 51). The results are shown
in Fig. 8. As can be seen, PSO with a small number
of agents did not converge to the global optimum. The
results of GA are shown in Fig. 9.

Fig. 8: Convergence of PSO optimization (Low-pass).

The last example is the fourth-order elliptic low-pass
filter shown in Fig. 10. For nominal values of compo-
nents R1 = R2 = R5 = R6 = R9 = R10 = R11 =

Fig. 9: Convergence of GA optimization (Low-pass).

Fig. 10: Fourth-order elliptic low-pass filter.

R12 = R13 = R14 = R16 = R18 = R19 = R20 = R21 =
R22 = 1 kΩ, R3 = R4 =2 kΩ, R7 = 8 kΩ, R8 = 10 kΩ,
R15 = R17 = 500 Ω, C1 = C3 = C4 = 100 nF, C2 =
200 nF the filter has the frequency response shown in
Fig. 11.
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Fig. 11: Frequency response of elliptic low-pass filter.

By proceeding as in [10] the suitable testable group
(R4, R8, R17, C1, C3) with respect to magnitude mea-
surements of V2 was chosen.

After approximately 20 iteration steps, PSO found
the global optimum. The set of test frequencies is f1 =
12,1 Hz, f2 = 1011 Hz, f3 = 2380 Hz, f4 = 3135 Hz
and f5 = 4166 Hz (E = 0, 50). The results are shown
in Fig. 12. The speed of convergence is good and the
global optimum was also found with a small number of
agents.

Fig. 12: Convergence of PSO optimization (Elliptic).

The results of GA are shown in Fig. 13. The speed of
optimization convergence is much lower than PSO. In
[10], the authors state that it may take up to thousands
of iteration steps.

4. Conclusion

The paper shows a novel approach to optimum test
frequency selection using the modified particle swarm
optimization, which minimizes the Test Index measure
E. In comparison with Genetic Algorithms the method
converges faster and provides results of greater accu-
racy.

Fig. 13: Convergence of GA optimization (Elliptic).
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