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Abstract. This article presents a specific approach for 

selecting a limited set of most relevant, information rich 

speech data from the whole amount of training data. The 

proposed method uses Principal Component Analysis 

(PCA) to optimally select a lower-dimensional data 

subset with similar variances. In this paper, three 

selection algorithms, based on eigenvalue criterion are 

presented. The first one operates and analyzes the data at 

the entire speech-recording level. The second one 

additionally segments each of the recordings into 

experimentally sized blocks, which theoretically divides a 

record level into several smaller information 

richer/poorer blocks. Finally, the third one analyzes all 

the speech records at the feature vector level. These three 

approaches represent three different criterion-based 

selection techniques from the coarsest to the finest data 

level. The main aim of the presented experiments is to 

show that PCA trained with the limited subset of data 

achieves comparable or even better results than PCA 

trained with the entire speech corpus. In fact, this 

approach can radically speed up the learning of PCA 

with much smaller memory and computational costs. All 

methods are evaluated in Slovak phoneme-based large 

vocabulary continuous speech recognition task. 

Keywords 

Eigenvalue, feature vector, principal components, 

selection criterion, variance. 

1. Introduction 

Linear feature transformations are well-used techniques 

in high-dimensional data processing such as face and 

automatic speech recognition (ASR). The most popular 

transformations in automatic speech recognition are 

Principal Component Analysis (PCA), [1], [2], [3] and 

Linear Discriminant Analysis (LDA), [4]. Our speech 

recognition research group tends to follow the modern 

trends in ASR. Therefore, we are interested in research 

and application of linear transformations in our speech 

recognition system. 

 It is known that one integral part of PCA is the 

covariance matrix computing from the training set. In 

case of relatively small training corpus there is no 

problem to compute the covariance matrix. But, in case 

of large corpus (thousands of recordings) and high-

dimensional data there may occur a problem with 

processing time (≈ several hours) and memory 

requirements (≈ 20 GB). In order to solve these problems 

we have built upon our previous work [5], [6] and we 

proposed a procedure to train PCA from a limited amount 

of training data. In other words, PCA can be learned from 

a limited subset, while the performance is maintained, or 

even improved. We called this procedure as Partial-data 

trained PCA. It is based on eigenvalue criterion and it is 

applied to LMFE (Logarithmic Mel-Filter Energies) 

feature vectors. The performance of the method is 

evaluated on Slovak speech corpus in phoneme-based 

continuous speech recognition task. 

 This paper is organized as follows. The next 

section gives the mathematical background of PCA. 

Section III describes the full-data trained PCA. 

Section IV presents the proposed algorithms for data 

selection. Section V describes the experimental setup of 

experiments and finally, Section VI concludes the paper. 

2. Principal Component Analysis 

Principal component analysis (PCA), [2] is a linear 

feature transformation and dimensionality reduction 

method, which maps the n-dimensional input data to K-

dimensional (K < n) linearly uncorrelated variables 

(mutually independent principal components) with 

respect to the variability. PCA converts the data by a 

linear orthogonal transformation using the first few 

principal components, which usually represent about 

80 % of the overall variance. The principal component 

basis minimizes the mean square error of approximating 

the data. This linear basis can be obtained by application 

of an eigendecomposition to the global covariance matrix 
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estimated from the original data. The characteristic 

mathematical stages of PCA can be briefly described as 

follows according to [2], [7]. Firstly suppose that the 

training data are represented by M n-dimensional feature 

vectors x1, x2, …, xM. One of the integral parts of PCA is 

the centering of all vectors (subtracting the mean) as: 

 Miii ;1 ;  xxΦ , (1) 

where: 
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is the mean vector. From the centered vectors i the 

centered data matrix with dimension n  M is created as: 

  MA ΦΦΦ 21 . (3) 

 To represent the variance of data across different 

dimensions, the global covariance matrix is computed as: 
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 An eigendecomposition (5) is applied to the 

covariance matrix in order to obtain its eigenvectors 

(spectral basis) u1, u2, …, un and their corresponding 

eigenvalues 1, 2, …, n, as follows: 

 niC iii ;1 ;  uu  . (5) 

 The principal components are represented by the 

eigenvectors and the most significant ones are determined 

by K leading eigenvectors resulting from the 

decomposition. The dimensionality reduction step is 

performed by keeping only the eigenvectors 

corresponding to the K largest eigenvalues (K < n). These 

eigenvectors form the transformation matrix UK with 

dimension n  M: 

  KKU uuu 21 , (6) 

while 1 > 2 > … > n. Finally, the linear transformation 

n → K is computed as: 

  xxΦy  i
T
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T
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where yi represents the transformed feature vector. The 

value of K can be chosen as needed or according to the 

following comparative criterion: 
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where the threshold T  0,9; 0,95. T represents the part 

of the global variance of the original data preserved in the 

new feature space. 

3. Full-Data Trained PCA 

In this section, the classical PCA training process is 

shortly described. At this stage, the whole amount of 

training data is used. Each parametrized speech signal in 

the corpus is represented by a separate LMFE matrix. 

Firstly, the initial data preparation steps are performed. 

These are described by (1), (2) and (3). The global 

covariance matrix is computed according to (4) and then 

decomposed to a set of eigenvector-eigenvalue pairs. 

According to the K largest eigenvalues, the corresponding 

eigenvectors were chosen. These formed the 

transformation matrix UK (6), which was used to 

transform the train and test corpus into PCA feature 

space. Note that the final dimension K of the feature 

vectors after PCA transformation was chosen to K = 13 

independently from the criterion formula (8), (because of 

regular comparison with MFCCs). The new PCA-based 

corpus was used to train the acoustic model based on full-

data trained PCA. This model was created in order to 

compare the full and partial-data trained PCA models. 

3.1. Proposed Method – Eigenvalue 

Criterion-Based Feature Selection 

This section presents three specific algorithms proposed 

in order to select the most specific feature subset for PCA 

training. There are two major processing stages. The first 

one is the “fast” PCA used for feature selection and the 

second one is the main PCA. The selection approach is 

based on eigenvalue criterion. The proportion of the first 

eigenvalue in the eigenspectrum decides whether the 

analyzed data is significant enough or not. To determine 

the proportion, following comparative criterion is used: 

 T
N

i

i

>

1

1







, (9) 

where N represents the number of eigenvalues, in this 

case N = 26. The selected data are concatenated into one 

train matrix, which the input for the main PCA. There are 

2 criterion modifications. In case of the first one, if the 

proportion is greater than T, the analyzed data are stored. 

The second one stores the data with respect to inversed 

comparative criterion, that means all analyzed data are 

stored if the proportion is smaller than T. The data that do 

not fulfill to the criterion are ignored. The selected data 

matrix is formed from the most characteristic data for 

optimal partial PCA training. We propose three feature 

selection levels based on different algorithms. The first 

one selects the data on the recording level, the second one 

analyzes the data on data block level and the third one 

analyzes the data on feature vector level. The main aspect 

of proposed algorithms is the training data matrix 

reduction. Each of the three mentioned algorithms were 

set to extract data of size 0,05; 0,1; 0,5; 1; 5 and 10 % of 

the original training set. 
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1) Recording Level Feature Selection 

The recording level selection represents the coarsest 

method of speech data analysis. The algorithm ignores all 

those recordings that do not fulfill to the selection 

condition. However, the ignored recordings could still 

contain some information rich training data parts. The 

function of this algorithm illustrates Fig. 1. The 

parameters for the algorithm are listed in the Tab. 1. In 

this table Qty (quality) means the amount of the selected 

subset in percentage. 

 

Fig. 1: Block diagram of the selection algorithm based on recording 

level analysis. 

Tab.1: Parameters for the algorithm based on recording level analysis. 

 Normal criterion Inverse criterion 

Qty [%] Threshold/Vectors Threshold/Vectors 

10,0 0,7625 1909720 0,537 1908732 

5,0 0,7955 951559 0,5091 950003 

1,0 0,85 193910 0,455 194084 

0,5 0,87 94691 0,435 95119 

0,1 0,9095 19431 0,4 19237 

0,05 0,925 9980 0,39 10042 

 

2) Data block Level Feature Selection 

The data block level selection algorithm represents an 

intermediate level between the three specified 

approaches. The disadvantage of ignoring of the whole 

recording due to the recording selection approach is 

reduced by another dividing of the recording data matrix 

into smaller blocks. In this work we worked with data 

blocks with size 26  26. These blocks were the subject 

of the selection criterion analysis which led to the 

selected PCA data matrix. The function of this algorithm 

is illustrated on Fig. 2. The parameters for this algorithm 

are listed in the Tab. 2. 

 

Fig. 2: Block diagram of the selection algorithm based on data block 

level analysis. 

Tab.2: Parameters for the algorithm based on data block level 

analysis. 

  Normal criterion Inverse criterion 

Qty [%] Threshold/Vectors Threshold/Vectors 

10,0 0,869 1902742 0,5075 1909720 

5,0 0,901 954866 0,442 945486 

1,0 0,942 192414 0,85 193910 

0,5 0,9525 94653 0,2235 94406 

0,1 0,968 19135 0,19 18890 

0,05 0,9726 9705 0,182 9620 

 

3) Feature Vector Level Selection 

The feature vector level selection algorithm stands for the 

finest method of speech data analysis because each 

feature vector represents the lowest available data level. 

The function of this algorithm is similar to Fig. 2 (only 

the block “Data block analysis” is changed to “Vector 

analysis”). 

 Data vector level feature selection algorithm 

operates similarly to the other two mentioned algorithms 

with the difference at the eigenvalue criterion application. 

Each LMFE vector is reshaped to matrix in order to 

compute its covariance matrix, which is treated as the 

input to the PCA analysis. The parameters for this 

algorithm are listed in the Tab. 3. 

Tab.3: Parameters for the algorithm based on vector level analysis. 

 Normal criterion Inverse criterion 

Qty [%] Threshold/Vectors Threshold/Vectors 

10,0 0,91 1897148 0,629 1906892 

5,0 0,9323 951645 0,591 947804 

1,0 0,962 190320 0,541 192110 

0,5 0,9695 96634 0,529 96226 

0,1 0,981 19592 0,513 19138 

0,05 0,9844 9543 0,5095 10047 

 

3.2. Experimental Setup 

The speech corpus [8] contains approximately 100 hours 

of spontaneous parliamentary speech recorded from 120 

speakers (90 % of men). For acoustic modeling 36917 

training utterances were exactly used. For testing 

purposes, another 884 utterances were used. 

 The speech was preemphasized and windowed 

using Hamming window. The window size was set to 

25 ms and the step size was 10 ms. Fast Fourier transform 

was applied to the windowed segments. Mel-filterbank 

analysis with 26 channels was followed by logarithm 

application to the linear filter outputs. The 26-

dimensional LMFE features were decorrelated by DCT to 

obtain 13-dimensional MFCC vectors and also used for 

PCA processing. After PCA, only 13 coefficients were 

retained. All the MFCC and PCA vectors were finally 

expanded by delta and acceleration coefficients to 39-

dimensional feature vectors. 

 The acoustic modeling by using HTK Toolkit [9] 

was performed. The recognition system used context 

independent monophones modeled using three-state left-

to-right HMMs. The number of Gaussian mixtures per 

state was a power of 2, starting from 1 to 256. The phone 

segmentation of 45 Slovak phones was obtained from 

embedded training and automatic phone alignment. 

During the test, it was used a word lattice created from a 

bigram language model, which from the test set was built. 

The vocabulary size was approx. 125k. Notice that the 

accuracies in the evaluation process were computed as 

the ratio of the number of all word matches to number of 

reference words. 
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4. Results and Conclusions 

In this paper, we proposed three feature selection 

algorithms based on eigenvalue-criterion in PCA. Overall 

36 experiments were performed. The results are 

compared to the 39-dimensional reference MFCC model 

and also to the PCA model (trained from the whole 

corpus – PCA 100 %). Models were trained for 1−256 

Gaussian mixtures. From the Tab. 4 it can be seen that 

partially trained PCA models achieve comparable or even 

better results than classical PCA. Accuracies of MFCC 

model for all mixtures are improved (except 128 mix.) by 

the proposed method and all accuracies of “PCA 100 %” 

are improved for all mixtures (italics font in the table). 

Generally, the best results for 0,05 % part of train corpus 

for 4 mixtures were achieved (bold marked values). Thus, 

it is enough a very small amount of speech data to train 

PCA successfully. We can suppose that the used amount 

contains probably the most homogeneous data suitable 

for PCA training. Note that the acoustic models are 

always trained from the whole corpus so there are enough 

data to estimate the parameters of Gaussian mixtures. Our 

proposed method achieves better results at a lower 

number of Gaussian mixtures (1−8). We suppose better 

results for higher mixtures in case of a larger amount of 

speech data. This approach can speed up the PCA training 

in case of large speech corpora. In the future, we consider 

the use of different input data kinds for this method and 

its application to larger speech databases. 

Tab.4: Recognition results [%] for the reference MFCC model, PCA 

model trained from the whole corpus and the partial-data PCA. 

Gauss. 

mix. 

Ref. 

MFCC 

PCA 

(100%) 

Partial 

PCA  

Qty 

[%] 

A to 

MFCC 

A to PCA 

(100%) 

1 82,32 82,80 83,03 5 +0,71 +0,23 

2 83,23 84,10 85,13 0,5 +1,90 +1,03 

4 85,07 86,01 87,45 0,5 +2,38 +1,44 

8 87,75 88,88 89,03 0,5 +1,28 +0,15 

16 89,54 89,84 90,20 5 +0,66 +0,36 

32 90,84 90,31 90,92 0,05 +0,08 +0,61 

64 91,41 91,00 91,54 0,05 +0,13 +0,54 

128 92,34 91,72 92,26 0,05 -0,08 +0,54 

256 92,51 92,30 92,62 0,05 +0,11 +0,32 
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