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Summary We briefly review rigorous results on the finite-size effects near first-order phase transitions at which a two-phase
coexistence takes place. We consider a large class of statistical mechanical models in (hypercubic volumes with periodic
boundary conditions at low temperatures. The results show a universal behavior of the asymptotic smoothing of the phase
transition discontinuities. The determination of the transition point from the finite-size data is presented.

Abstrakt. Strulne popisujeme rigordzne vvsledky o efektoch konetného objemu blizko fizovych prechodov prvého drubu,
kde prebieha koexistencia dvoch faz. Uvazujeme velka triedu modelov Statistickej mechaniky v (hyperykubickych objemoch
s periodickymi okrajovymi podmienkami pri nizkych teplotich. Vysledky ukazujd univerzdlne chovanie asympiotického

vyhladenia nespojitosti fizovyeh prechodov. Uvddzame aj urdéenie bodu prechodu z koneénoobjemovyeh dat.

1. INTRODUCTION

First-order phase transitions are determined by
discontinuities of the first derivatives of some
thermodynamic potential, for example, of the
specific free energy. The derivatives correspond to
macroscopic observables, like the specific internal
energy and the specific magnetization.

In order that such observables may possibly exhibit a
discontinuity, it is necessary to go to the idealized
infinite volume, that is, to take the thermodynamic
limit. However, real macroscopic systems are
always finite (although they contain a huge number
of constituting particles — atoms, molecules, etc.),
and no discontinuities can appear: thermodynamic
potentials in finite volumes are, as a rule, analytic
functions.

As a matter of fact, the infinite-volume jumps are in
finite volume smoothed out into rounded transitions.
The larger the system is, the more abrupt the
roundings become. The positions of the rounded
rrapsitions are in general shifted with respect to
those in the thermodynamic limit, see Fig. L
Moreover, the second-order derivatives (the specific
heat capacity, the susceptibility, etc.) and the higher-
order derivatives that have singularities of the d-
function type in infinite volumes are changed mto
sharp but finite spikes once the system is finite. The
points where the spikes are maximal are natural
(though not the only) candidates to describe the
shifts of the rounded transitions: at these points the
transitions are steepest.

The phenomena connected with such roundings of
relevant physical quantities are commonly referred
to as the finite-size effects near {or at) first-order
phase transitions. The aim of this paper is to give a

brief review of rigorous results of Borgs and
Kotecky| 1] that describe in detail these effects for
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Fig. 1: An infinite-volume observable 1 that is the first
derivative of a thermodynamic potential exhibits a jump
benveen My and 1. However, the jump is smoothed out
in its finite-volme version 1. The second derivative of a
thermodynamic potential 2 has the shape of a spike in a
finite volume, while it has a singularity of the d-function

rype (not shown). Its maximum position fimm isin

general shifted with respect to the infinite-volume

transition point ;2{ .

large but finite d-dimensional cubic systems of size

LY with periodic boundary conditions. Since there
are no phase transitions in d=1, we take =22 in the
sequel. For the sake of simplicity, we restrict
ourselves to the situations, where there are just two
coexisting phases. The general coexistence of
several phases is discussed in Ref. [1].
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The analysis of Borgs and Kotecky is based
on the powerful methods and techniques of the
Pirogov-Sinai theory [2.3] of first-order phase
wansitions. Therefore, their results can be applied to
all the models that can be treated by this theory.
Roughly speaking, these models are those whose
configurations can be rewritten in a geometrical
fashion as regions of ground states mutually
separated by collections of energetically unfavorable
barriers (usually called contours), see Eq. (5) below.
They include, for instance, spin lattice models with &
finite number of ground states and finite-range
interactions (such as the Ising model} at sufficiently
low temperatures or the g-state Potts models with ¢
sufficiently large. A prominent group of models to
which the results cannot be applied are Heisenberg-
like systems with continuous symmetries.

It should be remarked that the power of the Pirogov-
Sinai theory consists partly in the fact that it allows
one to treat asymmetric transitions when, arguably.
no serious alternatives o the theory are available.
Moreover, both the cases of field- as well as
temperature-criven  phase  transitions can  be
handled.[4]

Before stating and discussing the very results on the
finite-size effects from Ref. [1] in Section III, we
first introduce, in Section 11, a simple 1oy model that
catches and, to some extent, gives an insight into the
essential features of these effects. A few concluding
remarks are appended in Section IV.

2. ATOY MODEL

It is often very illuminating to examine first a toy
model that extremely simplifies the problem under
consideration, yet provides 4 good amount of insight.
Let us therefore consider the following “two-level”
model.

The model has a finite number of microscopic

configurations O, ,....0 where 1.1, 2 1.

4

We want to study the statistical mechanical
properties of an extensive observable M (for
example, the magnefization or the internal energy)
that we assume to be a sum of translation invariant
local functions of the configurations.  The
Hamiltonian H of the model contains interaction
potentials that are also translation invariant and of
finite-range.

In order to make the model extremely simple, we
will assume that // 18 a constant (it has the same

value £, for all microscopic configurations),

whereas M attains two values: M, for the first 1,

configurations and A, # M, for the remaining
7, configurations, This situation may be thought of
as the zero-temperature approximation of a system
that has two ground states with the degeneracy
nyand 7, respectively, and the corresponding
values M| and M, of M. An approximation of this
sort  may be expected, under appropriate
circumstances, to give a plausible picture even when
the system’s temperature is slightly raised above
zero.

. e s - d . ,
Confining the system to a cube of size L' with L
large and imposing periodic boundary conditions, we
- - T .
first observe that M, =m.L", i=1,2, where m is

the specific counterpart of M, (specific

magnetization, for instance). Similarly, £, = eOLd .
Using now the standard procedure, we modify the
original Hamiltonian # of the system by adding the
term -AM to it, where ki is a parameter (physically, it
is a conjugate quantity to M, like an external
magnetic field). Thus obtained generalized model is
suitable for studying the properties of M. To get
back to the original model, it suffices to take /=0 in
the end.

The partition function of the generalized model 1s

B
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is the inverse temperature and
e (h) = e, —hm,. Hence, the specific mean value
of M is
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Similarly, the specific variance of M (corresponding
to the specific susceptibility, say) is
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() may be
readily obtained in a similar manner. Notice that
hyr s the point at which y, (h) atains its

max

Higher-order derivatives of InZ,

maximun.

From Eqgs. (2) to (4) we may draw these conclusions
(c.f. Fig. 2). The specific mean value of M (that is,
the first derivative of the thermodynamic potential
with respect to /) interpolates between 1, and #1,
as the function tanh, and the change from one value
to the other takes place within an extremely narrow

. —if v g . .

region of the order L™ . The specific variance (the
second derivative) exhibits a very tall and sharp
spike determined by the function cosh™. The
height of the spike is of the order L™ and its width 1s

. i g .
of the order L™ If the ground-state degeneracies

. . n,
are equal (n;, = n,), the terms containing In
,
vanishes from the above equations, leading, In
particular, to /1 = 0.

1t is worth pointing out that the energy of the system
can also be chosen as the observable J. Formally,
this corresponds to first setting P=1 and E; =0
and then substituting -p for & and two energy levels
E, and E, for M| and M, respectively (thus,

e, for n, ., i=1,2).

3. THE SETTING AND RESULTS

In this section we will see that most of the behavior
of the toy model remains true even for models that
exhibit a first-order phase transition with a two-
phase coexistence. In particular, it will not be
essential whether the phase transition is temperate-
driven or field-driven, both the cases can be
analyzed analogously. To be specific, however, we

will have in mind the latter case. A rigorous analysis
of a temperature-driven transition can be found in
Ref. [4].

As stated in the Introduction, the models we consider
have the property that their configurations can be
rewritten as regions of ground states that are
separated by a collection of barriers called contours.
To be somewhat more precise, we consider the
models that are defined on a d-dimensional torus T
(periodic boundary conditions) with sides of length L
in each direction and whose partition function has
the form

Z{ o E e‘ﬁz Ry ey Ry H[)(}/a ). (5

Pt

Here the sum goes over collection of non-
overlapping contours (connected unions of closed

unit cubes in R), R, and R, are the regions of T
\U?m occupied by the first and the second ground
[£4

state, respectively, ¢, and e, are the corresponding
specific ground-state energies, and ©O(},) is a
rranslation invariant weight of the contour } . Fora
full and precise description of Z, we refer the
reader to Ref. [1]. We will again use n,.71, 21 to
denote the degeneracies of the ground states.

Thus, contours indeed play the role of boundaries
between the regions of different ground states (put
differently, they represent perturbations of the
ground states), and Z, is simply the partition
function of a hard-core gas of contours. Remarkably,
there is a large class of statistical mechanical models
whose partition function can be put into the form
from Eq. (5), see the Inroduction.

The energies ¢, as well as the contour weights

Oy, ) are assumed to be smooth functions of a
parameter /. In addition, we assume that there is a
unique point /i, at which e (h) and e,(h)
coincide. Finally, the label i=1,2 is chosen in such a
way that, say.
—{e, —e,)<0. (6)
dh
The assumption (6) that the derivatives of e, and
e, differ enables one to prove that the model
exhibits a first-order phase transition.
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The main point of the Pirogov-Sinai theory is that
whenever the energy paid for a contour J,
separating the ground-state regions is proportional to

/ [ {that is, to the number of unit cubes

. W1 .
iny, ), then the zero-temperature behavior of the
model (to be read off from the ground-state energies
e,(n) and e,(h)) prevails also when the
temperature is slightly increased above zero. Each
ground state then gives rise to a single low-
temperature phase that is just a small perturbation of
this ground state. As a consequence, these results
follow whenever [} and L are sufficiently large.[1]

One can introduce  “meta-stable”
energies f,(h) and f, (1) of the first and second
phase, respectively, through which a very detailed

specific  free

control over the partition function Z, can be
established:
fi(h)yand f,(h) are both smooth functions
of Ir:
2. f,(h)and f,(h)are very well approximated
by the ground-state energies, namely,
[y =e(h)+0Ole '“”‘“{? R €
and  similar relations  are  true  for the
derivatives of f,(h):

Lad

the true specific free energy of the model

‘ 1 1
(M s ——lim—InZ, (/i) exists and
/ Slim - nZ,

Sy =min{f (h). [L00}:

4. we have

Z ()= (e " e L O™
i i 2

The symbol O(x) stands here and below for an error
term that can be bounded by x with the constant
depending only on the dimension d (the bounds are
uniform in f3, L, and /). Using this detailed control
over Z, , the following consequences can be derived

in a straightforward way.[1]

"This assumption is called the Peierls condition and
it means an exponential decay of every contour

]

weight p(y, ) it . see Refs, [1-3] for details.

First, in view of (6) and (7), there is a unigue point
h, at which f,(h) and f,(h) coincide, and

f(h)y= f(h) for hzh, . while f{h)= f,(h)

for /1 £ h, . Moreover,

—(f, = [2)(h,) <0. 9)
oh
Therefore, h, is the infinite-volume transition point,
y - weonst ;
and. by (7), one has h, = hy +O(e ristf )} {here

the error term can be explicitly evaluated w0 an
arbitrary precision. if desired).

Second, let us introduce the finite-volume quantities

W)mlnzg,(h), FAUE ! M

m, (h) = —— =9,
8 X g on
(10)
Jf (b df (h)
and the numbers m, = _.__{%f E_h! ) o, = - f i
d;‘? - (}}z
90" f (k) :
Y, 8 = and Y, = -

ah”
numbers are universal for a given model
(independent of boundary conditions). There is a
(L) at which y, attains its

unique point Jr (

maximum, and

1,
In ~
i,
T G 0 T e o
o {a?zf —m, ) L ()
6’:;53 - 33’} __ 4+ (‘:’{LW“

(m, —m,) gL

If 1 1s in the interval l h Z{, [‘ﬁ — (the value of the

constant € is not essential), then

) 1, L,

m, (h)=——=
ot

=y ma 1111

hig 3 n> m('{“} )L{J }

a.«

+O(L™)
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On the other hand, if | i—h, [> = then m, and (R
L

¥, are very well approximated by their infinite-
volume limits,

m, (h) = d‘]i{}h) ', (14)
oh

XL (!}) - d a/( ]) + ()( -»ums!ifiﬁ }‘ (15)
h

Egs. (11) through (15) may be in short worded as
follows (see Fig. 2). The quantity m, (h) smoothly
interpolates  between the values m; and m,
according to the function tanh, whereas ¥, (1) has
the shape of a spike approximated by the function
cosh ™. The width of the region within which m L

abruptly (but smoothly) changes from "y tom is of

P

-d . Iy .
the order L . Thus, the slope of m, in this region,
that is, the height of the spike exhibited by ¥, . is of

a4 g . . .
the order L. This immense height {using
probabilistic arguments, one would expect the height
of x, . being the specific variance of M, see Eq. (4).
to be of the order [’ =1) is an aftermath of the
presence of the phase transition. Measuring the
(L), from
Eqg. (11) we may trace the position of the transition

7,

point /i, Notice that the terms containing In—=
n
1

position of the maximum point A

disappear from the equations once 72, = 11, . In this

(L)—h, is of the order L7

case the shift /i ( ;

instead of L™

& { ]
- Roax
)
oy

Fig. 2: In the interval 1 it~ h,» I§ ~— the finite-volume

quantities 1, (h) and L (h) are determined by the

-2 . .
function ranh and Cosh™, res s'pe(‘twﬁi v. The shift

h (L) IE is of the order L {or Lmzd when

m ax

n =Ny )

4. CONCLUDING REMARKS

In this paper we briefly reviewed the rigorous results
obtained in Ref. [1] on the finite-size effect near
first-order phase transitions for d-dimensional cubic
systems with periodic boundary conditions. We
considered the situation of a field-driven transition at
which two phases coexisted. Actually, we presented
the results in a shghtly different, perhaps more
convenient form than in Ref. [1]. In particular, we
took into account possible degeneracies 71, and 7,
of the two ground states, whereas in Ref. [1]
, . n,

n, =n, =1, and all the terms containing In—

n,

are missing (they are identically zero).
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