SYNTHESIS OF RELIABLE TELECOMMUNICATION NETWORKS

Dusan Trstenk3, Ladislav Schwartz3, Milan Trunkvalter3, Roman Buroiu1, Jaroslav Sadowsky2

1) Faculty of Electrical Engineering, University of Zilina, Velesy Dol, 01026 Zilina, Slovak Republic
2) Department of Information Technology, Technical University of Vienna, Huprechtgasse 8-10, A-1040 Wien, Austria

Summary
In many application, the network designer may want to know how to synthesise a reliable telecommunication network. Assume that a network, denoted as $G_{n,m}$, has the number of nodes n and the number of edges m. The operational probability of each edge is known. The system reliability of the network is defined to be the reliability that every pair of nodes can communicate with each other. A network synthesis problem considered in this paper is to find a network $G_{n,m}$ that maximises system reliability over the class of all networks for the classes of networks $G_{n,m}$, $G_{n,e}$, and $G_{n,v}$, respectively. In addition an upper bound of maximum reliability for the networks with n nodes and e edges $(e=2n+1)$ is derived in terms of node degrees. Computational experiments for the reliability upper bound are presented. The results show, that the proposed reliability upper bound is effective.

1. INTRODUCTION

In the design of telecommunication and computer network, system reliability is an important parameter. The network may want to know how to synthesise a network such that the network system reliability is maximised. In telecommunication and computer network, system reliability can be defined as the probability that every pair of nodes can communicate with each other. In contrast to the large literature on computing and analysis of network reliability, there are very few results concerned with synthesis problem. In this paper we consider a network synthesis problem. Assume that the number of nodes n, the number of edges e, and the operational probability of each edge are known. The synthesis problem is to find a network that maximises system reliability over the class of all networks having n nodes and e edges. A network with n nodes and e edges is denoted as $G_{n,e}$. In this paper, we consider the optimal networks for the classes of networks $G_{n,m}$, $G_{n,e}$, and $G_{n,v}$, respectively. In addition, an upper bound of maximum reliability for the networks with n nodes and e edges $(e=2n+1)$ is derived in terms of node degrees. Determining maximum reliability or an upper bound of maximum reliability of networks $G_{n,m}$ is useful for network designer because, in some applications, it is desired to find the least cost network under a given reliability constraint. Maximum reliability or its upper bound can be used to determine a lower bound of the reliability of an equivalent network. The system reliability of $G_{n,m}$ can be computed as the probability that all nodes in G are connected. Note that spanning trees of G, denoted as T, connect all nodes in G. The system reliability can then be written as

$$R(G) = |U(T_p, A_1)|$$

where A_1 is the event in which spanning tree T_p is operational and $U(T_p)$ is the number of spanning trees in G. Thus, the problem considered in this paper can be mathematically stated as

$$R(G_{n,m}) = \max R(G_{n,m}) / G = (V, E, p), \{V, E\} = n, \{E_p\} = e$$

where $G_{n,m}$ is the graph that maximises system reliability over class of all graphs having n nodes and e edges. We call such a graph $G_{n,m}$ as the maximum reliability graph.

In section 2, we find the maximum reliability graph $G(n,m)$. Section 3 derives the upper bounds of $R(G_{n,m})$ for $e = n + 2, \ldots, (n-1)/2$. Computational results are presented in section 4 to show the effectiveness of the reliability upper bounds.

2. MAXIMAL SYSTEM RELIABILITY OF NETWORKS $G_{n,m}, G_{n,e}, G_{n,v}$

Lemma 1 Let n be the number of nodes in the network and p be the probability of each edge. Then,

$$1. |R(G_{n,m})| = p + (1 - p)$$

$$2. R(G_{n,m}) = p^n + (1 - p)$$

Lemma 2 Let n be the number of nodes in the network and p be the probability of each edge. Let $C_{i,j}$ be a cycle including a chord. Then

$$\max \{R(C_{i,j})\} =$$

$$= p^n + np^{n-1}(1 - p) + \frac{n^2 - 1}{2} p^{n-1}(1 - p)$$

if n is even

$$= p^n + np^{n-1}(1 - p) + \frac{n^2 - 1}{4} p^{n-1}(1 - p)$$

otherwise

Lemma 3 Let $G_{n,m}$ be a graph with n nodes and e edges and contain two elementary cycles without any common edge. Then

$$R(G_{n,m}) = \max \{R(C_{i,j})\}$$

Lemma 4 Let n be the number of nodes in the network and p be the operation probability of each edge. Then

$$R(G_{n,m}) = p^n + (n+1)p^{n-1}(1 - p) + \frac{(n+1)^2}{3} p^{n-1}(1 - p)^2$$

An interesting result from Lemma 4 is that the topology of $G_{n,m}$, namely, three cycles and the lengths of these cycles do not differ by more than one. The topologies $G_{n,m}$ are shown in Fig. 1.

3. UPPER BOUNDS OF MAXIMUM RELIABILITY OF NETWORKS $G_{n,m}$

Before stating the expressions for the upper bounds of $R(G_{n,m})$, let $i = 2, n-2, \ldots, (n-1)/2$. We show a method to compute an upper bound for the network having nodes of degree d_1, d_2, \ldots, d_n. The degree of node i is defined as the number of links incident with node i. Note that each network can be associated with a unique sequence of degrees called its degree sequence

$$\sum d_i = 2l$$

where l is total number of links in the network. For convenience, d_1, d_2, \ldots, d_n is assumed in this section. The node having degree d_i is labelled as node i. The minimal cutset of a connected graph G is a set of links whose from G leaves G disconnected, provided deletion of any proper subset of these links does not disconnect G. Let p denote the set that contains all links incident to node i, then, p, is a cutset of G. Let G_d denote the event that all links in the jth minimal cutset fail and $\overline{C_i}$ the complement of this event. In addition, let F_i denote the event that all links incident to node i fail and $\overline{C_i}$ denote complement of this event. By sum of product (SOP), therefore, the unreliable of the network G with degree sequence d_1, d_2, \ldots, d_n is

$$1 - R(G) = \sum p_i (C_i) = C_1 (C_2 \cap C_3) + \ldots +$$

$$+ P(C_2 \cap C_3 \cap C_4 \cap \ldots \cap C_{l-1} \cap C_{l})$$

$$\geq P(F_1) + P(F_2 \cap F_3) + \ldots +$$

$$+ P(F_s \cap F_{s+1} \cap \ldots \cap F_{n-1})$$

Let $q = 1 - p$ and we have $P(F_i) = q^{d_i}$ an with recursive process we obtain

$$1 - R(G) \geq$$

$$\geq q^l + \sum_{i=1}^l q^{d_i} \prod_{j=1}^{l-1} (1 - q^{d_i}) \prod_{j=1}^{l-1} (1 - q^{d_i})$$

$$= \sum_{i=1}^l q^{d_i} \prod_{j=1}^{l-1} (1 - q^{d_i}) \prod_{j=1}^{l-1} (1 - q^{d_i})$$

The graph with 3 cycles

![Fig. 1 Examples of networks](image-url)
SYNTHESIS OF RELIABLE TELECOMMUNICATION NETWORKS

Dusan Trstenjak1, Ladislav Schwarz2, Milan Trunkvalter3, Roman Baroš3, Jaroslav Sádovsky2

1Faculty of Electrical Engineering, University of Žilina, Veľký dier, 40002 Žilina, Slovak Republic
2Department of Information Technology, Technical University of Vienna, Hbisaptt 9-10, A-1040 Wien, Austria

Summary

In many application, the network designer may want to know how to synthesise a reliable telecommunication network. Assume that a network, denoted as G\(n\), has the number of nodes n and the number of edges e, and the operational probability of each edge is known. The system reliability of the network is defined to be the probability that every pair of nodes can communicate with each other. A network synthesis problem considered in this paper is to find a network \(G^*\), that maximises system reliability over the class of all networks for the classes of networks \(G_{n,e}\), \(G_{n,e}\), and \(G_{n,e}\), respectively. In addition an upper bound of maximum reliability for the networks with n nodes and e edges (e=2n) is derived in terms of node degrees. Computational experiments for the reliability upper bound are also presented. The results show, that the proposed reliability upper bound is effective.

1. INTRODUCTION

In the design of telecommunication and computer network, system reliability is an important parameter. The network may want to know how to synthesise a network such that the network system reliability is maximised. In telecommunication and computer network, system reliability can be defined as the probability that every pair of nodes can communicate with each other. In contrast to the large literature on computing and analysis of network reliability, there are very few results concerned with synthesis problem. In this paper we consider a network synthesis problem. Assume that the number of nodes \(n\), the number of edges \(e\), and the operational probability of each edge are known. The synthesis problem is to find a network that maximises system reliability over the class of all networks with \(n\) nodes and \(e\) edges. A network with \(n\) nodes and \(e\) edges is denoted as \(G_{n,e}\). In this paper, we find the optimal networks for the classes of networks \(G_{n,e}\), \(G_{n,e}\), and \(G_{n,e}\), respectively. In addition, an upper bound of maximum reliability for the networks with \(n\) nodes and \(e\) edges (e\(=\)2n) is derived in terms of node degrees. Determining maximum reliability or an upper bound of maximum reliability of networks \(G_{n,e}\) is useful for network designer because, in some applications, it is desired to find the least cost network under a given reliability constraint. Maximum reliability or its upper bound can be used to determine a lower bound of the minimum number of edges, in the network which may satisfy the reliability constraint.

A computer communication network can be modelled by probabilistic graph \(G=(V,E,p)\), in which \(V\) and \(E\) are the set of nodes and edges that represent the computers and communication links, respectively. Thus, two terms, network and graph are used interchangeably in this paper. We assume that all nodes are perfectly reliable but any edge \(e\) in \(E\) may fail (work) with probability \(p\) (\(=1-p\)). In addition, all edges failures are assumed to occur independently of each other. The system reliability of \(G\) is denoted by \(R(G)\), the probability that all nodes in \(G\) are connected. Note that spanning trees of \(G\), denoted as \(T\), is connected all nodes in \(G\). The system reliability can then be written as:

\[R(G) = \prod_{e \in E} (1-p_e) \]

where \(p_e\) is the probability of edge failure.

2. MAXIMAL SYSTEM RELIABILITY OF NETWORKS \(G_{n,e}\), \(G_{n,e}\), AND \(G_{n,e}\)

Lemma 1 Let \(n\) be the number of nodes in the network and \(p\) be the operation probability of each edge. Then:

\[R(G_{n,e}) = p^{e/2} (1-p)^{n-e} \]

Lemma 2 Let \(n\) be the number of nodes in the network and \(p\) be the operation probability of each edge. Then \(C_{n,e}\) be a cycle including a chord. Then:

\[R(G_{n,e}) = p^{e/2} \]

3. UPPER BOUNDS OF RELIABILITY OF NETWORKS \(G_{n,e}\)

Before stating the expressions for the upper bounds of reliability of \(R(G_{n,e})\), we show a method to compute an upper bound for the reliability for the network having nodes of degree \(d_1, d_2, \ldots, d_n\). The degree of node \(i\) is defined as the number of links incident with node \(i\). Note that each node can be associated with a unique sequence of degrees called its degree sequence.

\[d_1, d_2, \ldots, d_n \]

where \(l\) is total number of links in the network. For convenience, \(d_1\geq d_2\geq \ldots \geq d_n\) is assumed in this section. The node having degree \(d_i\) is labeled as node \(i\). The minimal cutset of a connected graph \(G\) is a set of links whose removal disconnects at least one pair of nodes. The minimal cutset of disconnected graph \(G\) is a set of links whose removal disconnects at least one pair of nodes.

Let \(q_{d,1}\) denote the event that all links incident to node \(i\) fail and \(\bar{F}_i\) denote complement of this event. In addition, let \(F_i\) denote the event that all links incident to node \(i\) fail and \(\bar{F}_i\) denote complement of this event. By sum of product (SOP), therefore, the unreliability of the network \(G\) with degree sequence \(d_1, d_2, \ldots, d_n\) is:

\[R(G) = \prod_{i=1}^{n} q_{d_i} + \sum_{i=1}^{n} \prod_{j=1}^{d_i} q_{d_j} \]

where \(q_{d_i}\) is the probability that all links incident to node \(i\) fail and \(\bar{F}_i\) denote complement of this event. By sum of product (SOP), therefore, the unreliability of the network \(G\) with degree sequence \(d_1, d_2, \ldots, d_n\) is:

\[R(G) = \prod_{i=1}^{n} q_{d_i} + \sum_{i=1}^{n} \prod_{j=1}^{d_i} q_{d_j} \]

The graph with 3 cycles

\[R(G_{n,e}) = p^{e/2} \]

An interesting result from Lemma 4 is that the topology of \(G_{n,e}\) three cycles and the lengths of these cycles do not differ by more than one. The topologies of \(G_{n,11112}\) and \(G_{n,11121}\) are the spanning tree and the ring respectively. Furthermore, Lemma 4 can be generalised.

Then, we can obtain that the topology of \(G_{n,11111}\) three cycles and the lengths of these cycles do not differ by more than one. The topologies of \(G_{n,11111}\) and \(G_{n,11111}\) are shown in Fig. 1.
where \(n = \min(d_i + 1), i = 1, 2, \ldots, n \).

Lemma 5. Let \(G \) be a network with degree sequences \(d_1, d_2, \ldots, d_r \), and \(d_r + 1 \) be the reliability of each link in \(G \). Then the reliability of network \(G \) is

\[
R(G) \leq 1 - \sum_{i=1}^{n} \prod_{k=1}^{m} (1 - q^{d_i+1}) \prod_{k=1}^{n} (1 - q^{d_k+1})
\]

where \(n = \min(d_i + 1), i = 1, 2, \ldots, n \).

For notational convenience, let

\[
H(d_1, d_2, \ldots, d_r) = 1 - \sum_{i=1}^{n} \prod_{k=1}^{m} (1 - q^{d_i+1}) \prod_{k=1}^{n} (1 - q^{d_k+1})
\]

\(H(d_1, d_2, \ldots, d_r) \) can be chosen as the upper bound of the reliability \(R(G) \). Our goal is to find upper bound on \(R(G) \) for large \(n \). This problem can be transformed to find a network with degree sequence \(d_1, d_2, \ldots, d_r \) such that \(H(d_1, d_2, \ldots, d_r) \) is maximal.

Lemma 6. For any network \(G(N, L, p) \) with degree sequence \(d_1, d_2, \ldots, d_r \) and \(d_r + 1 \), if \(d_r + 1 \) and \(d_r + 1 \), then there exist a node \(k \) with link \((k, i) \) in \(L \) and link \((k, j) \) in \(L \). Remote link \((k, k) \) from \(G \) and add link \((k, k) \) to \(G \). The resulting network \(G' \) has a greater upper bound. That is

\[
H(d_1, d_2, \ldots, d_r) = 1 - \sum_{i=1}^{n} \prod_{k=1}^{m} (1 - q^{d_i+1}) \prod_{k=1}^{n} (1 - q^{d_k+1}) \geq H(d_1, d_2, \ldots, d_r, d_r + 1)
\]

Lemma 7. The network \(G \) with degree sequence \(d_1, d_2, \ldots, d_r \)

\[
\sum_{i=1}^{n} d_i = 2l
\]

maximizes \(H(d_1, d_2, \ldots, d_r) \) over all degree sequences of the network with \(n \) nodes and \(l \) edges.

One interesting result from Lemma 7 is that the degrees of the nodes in any graph cannot differ by more than one in order for the graph to have a maximal value of \(H(d_1, d_2, \ldots, d_r) \) for any example the network, the network with degree sequence 2, 2, 3, 3, 3, 3 has the maximal value of \(H(d_1, d_2, \ldots, d_r) \) among all networks with degree sequence \(d_1, d_2, \ldots, d_r \) where \(d_r + 1 \).

4. COMPUTATIONAL RESULTS

In the next graphs will be \(\rho = 0.9 \), \(n = 5 \)

In Fig. 2b is added the branch between nodes 1 and 5 and is

\[
R(G_{s+1}) = p^5 + n p^{5+1} (1 - p) = 0.91854.
\]

In Fig. 2c is still added the branch between nodes 1 and 5 and is

\[
R(G_{s+1}) = p^5 + (n + 1) p^{5+1} (1 - p) + \frac{(n + 1)^2}{3} p^{5+2} (1 - p)^2 = 0.9536382.
\]

In Fig. 2d is added the branch between nodes 3 and 5 and is

\[
R(G) = 1 - \sum_{i=1}^{n} \prod_{k=1}^{m} (1 - q^{d_i+1}) \prod_{k=1}^{n} (1 - q^{d_k+1})
\]

\(R(G) \leq 0.972890199 \),

where \(n = \min(d_i + 1), i = 1, 2, \ldots, n \).

5. CONCLUSIONS

This paper considers network topological optimization with a reliability constraint. The objective is to find the topological layout of links, at a minimal cost under the constraint that the network reliability is not less than a given level of system reliability. A decomposition method, based on branch and bound, is used for solving the problem. In order to speed-up the procedure, an upper bound on system reliability in terms of node degree is applied. A numerical example illustrates, and shows the effectiveness of the method.

REFERENCES

where \(n = \min(d_i, i = 1, 2, \ldots, n) \).

Lemma 5. Let \(G \) be a network with degree sequences \(d_1, d_2, \ldots, d_n \), and \(q \) the reliability of each link in \(G \). Then the reliability of network \(G \) is

\[
R(G) \leq 1 - \left(\sum_{i=1}^{n} q^{d_i} \prod_{k=1}^{n-1} (1-q^{d_k}) \right) \prod_{k=1}^{n-1} (1-q^{d_k})
\]

where \(n = \min(d_i, i = 1, 2, \ldots, n) \).

For notational convenience, let

\[
H(d_1, d_2, \ldots, d_n) = 1 - \left(\sum_{i=1}^{n} q^{d_i} \prod_{k=1}^{n} (1-q^{d_k}) \right) \prod_{k=1}^{n} (1-q^{d_k})
\]

\(H(d_1, d_2, \ldots, d_n) \) can be chosen as the upper bound of the reliability \(R(G) \). Our goal is to find upper bound on \(R(G) \) for \(n = 2, n = 3, n = n+1 \). This problem can be transformed to find a network with degree sequence \(d_1, d_2, \ldots, d_n \) such that \(H(d_1, d_2, \ldots, d_n) \) is maximal and \(\sum d_i = 2\ell \) holds.

Lemma 6. For any network \(G \) with degree sequence \(d_1, d_2, \ldots, d_n \) \((d_1 \leq d_2 \leq \ldots \leq d_n) \) if \(d_i \leq \alpha \), and \(d_i \leq \alpha \) if \(\alpha \leq d_i \), where \(\alpha \geq t \). Then there exist a node \(k \) with link \(k, t \in L \), and link \(k, s \) \(s \in L \). Remove link \(k, t \) from \(G \) and add link \(k, s \) to \(G \). The resulting network \(G' \) has a greater upper bound. That is

\[
H(d_1, \ldots, d_{i-1}, d_i, d_{i+1}, \ldots, d_n) \geq H(d_1, \ldots, d_{i-1}, d_i', \ldots, d_n, d_i', \ldots, d_n)
\]

Lemma 7. The network \(G \) with degree sequence \(d_1, \ldots, d_n \) which maximizes \(H(d_1, \ldots, d_n) \) over all degree sequences of the network with \(n \) nodes and \(\ell \) edges.

One interesting result from Lemma 7 is that the degrees of the nodes in any graph cannot differ by more than one in order for the graph to have a maximal value of \(H(d_1, d_2, \ldots, d_n) \). For example the network, the network with degree sequence \(2, 2, 3, 3 \) has the maximal value of \(H(d_1, d_2, \ldots, d_n) \) among all networks with degree sequence \(d_1, d_2, \ldots, d_n \) where \(d_1 + d_2 + \ldots + d_n = 16 \).

4. **COMPUTATIONAL RESULTS**

In the next graphs will be \(n = 9, n = 5 \).

In Fig. 2b is added the branch between nodes 1 and 5 and is

\[
R(G_{a+1}) = p^5 + np^5(1-p) = 0.91854.
\]

In Fig. 2c is added the branch between nodes 4 and 5 and is

\[
R(G_{a+1}) = p^5 + (n+1)p^5(1-p) + \frac{(n+1)^2}{3} p^5(1-p)^2 = 0.9536082.
\]

In Fig. 2d is added the branch between nodes 3 and 5 and is

\[
R(G) \leq 1 - \sum_{i=1}^{n} q^{d_i} \prod_{k=1}^{n-1} (1-q^{d_k}) \prod_{k=1}^{n-1} (1-q^{d_k})
\]

where \(n = \min(d_i, i = 1, 2, \ldots, n) \).

The most effective ratio of reliability is when to tree is added one branch.

5. **CONCLUSIONS**

This paper considers network topological optimization with a reliability constraint. The objective is to find the topological layout of links, at a minimal costs under the constraint that the network reliability is not less than a given level of system reliability. A decomposition method, based on branch and bound, is used for solving the problem. In order to speed-up the procedure, an upper bound on system reliability in terms of node degree is applied. A numerical example illustrates, and shows the effectiveness of the method.

REFERENCES
