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Abstract. The smart grid is an intelligent power
system network that should be reliable and resilient for
sustainable operation. Wide-Area Measurement Sys-
tems (WAMS) are deployed in the power grid to provide
real-time situational awareness to the power grid oper-
ators. An excellent strategy for exploiting the WAMS
data effectively is to extract relevant insights from the
increasing volume of data collected. Feature extrac-
tion techniques are pivotal in developing data-driven
models for power systems. This paper proposes an
ensemble feature extraction method for developing
intelligent data-driven models for transmission line
fault detection and classification. A comparative ef-
ficacy analysis of the proposed ensemble feature extrac-
tion method is carried out with state-of-the-art feature
extraction methods. The models developed and eval-
uated with the feature data derived with the proposed
method give an accuracy of 100 % for fault detection
and 99.78 % for fault classification. This method also
has the advantage of significantly reducing training and
testing time. Features are extracted from the WAMS
data collected by simulating an IEEE 39 bus test
system in the PowerWorld simulator.
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1. Introduction

Power delivery networks worldwide are becoming
smarter with the deployment of intelligent systems.
A smart grid is an intelligent, reliable, resilient, and
sustainable power system network [1]. Phasor Mea-
surement Units (PMUs) are a feature of modern
power grids that collect GPS synced data. A sizable
amount of Wide-Area Measurement Systems (WAMS)
data is recorded and saved with PMU installations
on the power network. This growing body of data
can yield insightful conclusions. Algorithms for data
mining or machine learning aid in the information
extraction process [3]. Relay malfunctions are fre-
quently reported due to the growing use of power
electronics and distributed energy sources on the elec-
trical grid [4]. Most recorded blackouts are due to
the cascading effects of the primary protection system
failure [6].

Transmission Line protection is a vital aspect of
a resilient and self-healing smart grid [2]. Intelli-
gent fault diagnosis methods are critical for achieving
a reliable smart grid. Wide Area situational aware-
ness plays a pivotal role in improving the resiliency
and reliability of the grid [1]. Methods for detecting,
classifying, and localising transmission line faults in
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the literature typically fall into one of two categories:
physics model-based or data-driven model-based [5].
In power grids, stochastic renewable energy sources are
becoming more prevalent, making it hard to develop
a solid mathematical system model [5]. The reliabil-
ity of model-based methods has thus become question-
able. Intelligent approaches that extract information
from measurement data are best suited for develop-
ing protective solutions for the present power system.
Short circuit faults on transmission lines can be found,
located, and categorised using data mining techniques
using WAMS data [3].

Features are representations of the input data
and contain the characteristics of and information
about the input data. To build machine learning mod-
els for Fault Detection and Classification (FD&C), fea-
ture extraction techniques are important. With the
help of feature extraction techniques, pertinent infor-
mation may be extracted from power system signal
data for FD&C as well as essential patterns can be
found in measurement data to create machine learning
models. Signal processing techniques, wavelet trans-
form, wavelet multivariate analysis, and wavelet en-
tropy analysis are the most applied feature extraction
methods [7], [8], [9] and [10] for FD&C in transmis-
sion lines. Some other signals processing techniques
for power system signals analysis are Fourier transform,
Stockwell transform and Hilbert Huang transform [11],
[12] [13] and [14]. Wavelet transform gives good res-
olution in both the time and frequency domains [15]
and [16] and is used predominantly in the literature
for power signals analysis.

Authors in [18] propose a transmission line protec-
tion scheme using Discrete Wavelet Transform Multi-
Resolution Analysis (DWT-MRA) of current signals.
The energy values of the approximation coefficients of
the current signals are used to categorise faults. In [19],
the authors propose fault detection and classification
of transmission lines using a double channel extreme
learning machine. The feature dataset is formed from
the energy values of the DWT coefficients at each level
and the standard deviation of the coefficient values.
The three phase voltage and current signals from both
ends of a transmission line are analysed. In [7], authors
propose Wavelet Entropy values of the voltage signals
as inputs to an Artificial Neural Network (ANN) for
fault type classification. Reference [20] proposes trans-
mission line fault classification using DWT feature ex-
traction. DWT coefficients using db6 mother wavelet
with level 6 decomposition of three-phase current sig-
nals form the features. An ANN with the sum of the
level 6 detail coefficients as inputs does the fault type
classification. In [21], the authors propose a feature
extraction using Wavelet Packet Entropy and ANN
for faults classification. The Mother wavelet chosen
is db6 with three levels of decomposition. Features are

the Wavelet Packet decomposition of three-phase fault
current signals from the faulted line. Reference [22]
proposes a similar approach as [20] for feature extrac-
tion. [23] presents the Maximum Overlap Discrete
Wavelet Transform (MODWT) for feature extraction.
The energy values of the MODWT coefficients form
the features. In [24] and [25] Decision Tree (DT) and
Ensemble Tree Classifier (BTEC) algorithms are used
for classification. [8] presents fault classification by
K Nearest Neighbour (KNN) algorithm. The instan-
taneous values of three-phase currents are the inputs
to the classification algorithm. Authors use the Sup-
port Vector Machine (SVM) classification algorithm in
[11] as the faults classifier. Reference [26] proposes
an ensemble feature extraction method using wavelet
transform.

1.1. Related Work

WAMS data collected by PMUs is GPS synchronised
and offers a broad system view that can be used to
create FD&C models. In [11], the researchers provide
a method for classifying and recognising faults based
on PMU data. Park and Fast Fourier Transformation
techniques are used to extract the features, and SVM
is used to categorise the faults. In [18], researchers
suggest creating FD&C models for transmission line
protection using the wavelet decomposition’s energy
as attributes taken from the WAMS data. The au-
thors of [27] employ PMU data to identify and classify
various power grid events. In [28] the authors propose
a novel method for detecting faults using the direc-
tion of active and reactive power flow on each side of
the line. The algorithm presented has fault classifi-
cation capability, but the time taken to classify the
faults is not mentioned. In reference [29] authors pro-
pose fault detection and location by a methodology
constructing a nodal admittance matrix. Knowledge of
network parameters and topology is required for con-
structing the nodal admittance matrix. Reference [30]
proposes the detection of high impedance faults in a so-
lar photovoltaic integrated system. The energy val-
ues of the wavelet coefficients are extracted as features
and the faults are classified using the LSTM network
with an accuracy of 92.42 %. In [31], features are ex-
tracted from the PMU data using phaselet transform,
and faults are classified by the Gaussian Naive Bayes
(GNB) algorithm.

A few works that demonstrate FD&C models cre-
ated using WAMS data are references [11], [18], [27]
and [31]. Most of the machine learning methods for de-
veloping FD&C models for detecting, classifying, and
localizing faults on transmission lines use the wavelet
transform based feature extraction techniques [7], [8],
[9], [10], [12], [18], [19], [20], [21], [22], [23], [24],
[25] and [30]. Hence, there is a need to identify
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a computationally efficient wavelet transform-based
feature extraction method for developing FD&C mod-
els for FD&C on transmission lines using WAMS data.

1.2. Contribution

The main contributions of this research work are:

• This paper investigates wavelet transform based
feature extraction techniques for developing
FD&C models for transmission lines using WAMS
data. The time taken for feature extraction, the
training and testing time of the FD&C models and
the accuracy are the performance measures con-
sidered for determining the efficacy of the feature
extraction techniques.

• An ensemble feature extraction method is
developed. The performance of the classification
models developed with state-of-the-art classifier
methods are evaluated with the ensemble features
data derived from complete, sparse, and noisy
measurement data to validate the efficacy of the
features.

1.3. Structure of the Paper

The structure of this paper is as follows. Section 2.
gives a preview of the wavelet transform feature extrac-
tion methods used in this paper. Section 3. describes
the experimental setup for simulation and the feature
data set development for fault detection and classifica-
tion. Section 4. has the results and the discussion.
Section 5. has the concluding remarks.

2. Feature Extraction
Techniques

The different feature extraction techniques used in this
paper are the Discrete Wavelet Transform (DWT),
Wavelet Packet Transform (WPT), Maximum Overlap
Discrete Wavelet Transform (MODWT) and Wavelet
Scattering Transform (WST). Multi-resolution analy-
sis of the signals is done by decomposition using DWT,
WPT, MODWT and WST. Statistical features of the
wavelet coefficients, energy levels of the decomposition
coefficients, and entropy values are also derived as fea-
tures.

2.1. Discrete Wavelet Transform

Wavelet transform is a signal processing technique
used for analyzing the signals in time and frequency

domains [15]. Wavelet transforms give good time reso-
lution and frequency resolution for high frequency and
low-frequency events. Continuous Wavelet Transforms
(CWT) are used for wavelet analysis of continuous sig-
nals and Discrete Wavelet Transforms (DWT) for dis-
crete signals. DWT helps in the multilevel decompo-
sition of the signal. The signal’s frequency band is
resolved into low (approximation) and high (detail co-
efficients) components using high and low pass filters at
different levels. The operation is repeated by inputting
the down-sampled low pass component into another
filter pair. The approximation coefficients are the
low-frequency decomposition, and the detail coeffi-
cients are the signal’s high-frequency decomposition.

A discrete signal Sn(n) can be represented as
in Eq. (1), where µj0,k[n] and ωj,k[n] are discrete
functions that are orthogonal to each other:

Sn[n] =
1√
N

∑
k

Vµ[j0, k]µj0,k[n]+

+

∞∑
j=j0

∑
k

Vω[j, k]ωj,k[n].

(1)

The wavelet coefficients can be represented as the
approximation coefficients as in Eq. (2), and the detail
coefficients as in Eq. (3):

Vµ[j0, k] =
1√
N

∑
n

Sn[n]µj0,k[n], (2)

Vω[j, k] =
1√
N

∑
n

Sn[n]ωj,k[n]. (3)

The wavelet decomposition at three levels is as shown
in Fig. 1. The low pass and high pass filters de-
compose the signal, and the output of the filters are
down-sampled to get the approximation and detail
coefficients. Only the output of the low pass filter is
decomposed again at subsequent levels.

Signal

cA1 cD1

cA2 cD2

cA3 cD3

Level 1

Level 2

Level 3

1/20 1/16 1/8 3/83/16 1/4 7/165/16

Frequency (Hz)

Fig. 1: Wavelet decomposition at level 3.
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2.2. Wavelet Packet Transform

The WPT divides the frequency into equal bands at
each level [17]. In WPT, both the outputs of the low
pass filter and high pass filters are further decomposed
in the subsequent levels. The wavelet packet decom-
position for three levels is shown in Fig. 2. WPT gives
a better frequency resolution than DWT.

Signal

cA1 cD1

cA1A2 cA1D2

cA1A2A3 cA1A2D3

Level 1

Level 2

Level 3

1/20 1/16 1/4 3/8
Frequency (Hz)

cD1A2 cD1D2

cA1D2A3 cA1D2D3 cD1A2A3 cD1A2D3 cD1D2A3 cD1D2D3

1/8 3/16 5/16 7/16

Fig. 2: Wavelet Packet Transform decomposition at level 3.

2.3. Maximum Overlap Discrete
Wavelet Transform

Lowpass and highpass filters are applied to the input
signal at each level in the Maximal Overlap Discrete
Wavelet Transform (MODWT), which is comparable
to the Discrete Wavelet Transform (DWT) [32]. The
MODWT does not decimate the coefficients, and at
every level of the transform, the number of wavelets
and scaling coefficients is equal to the number of sam-
ple observations. MODWT does not downsample the
output at each scale. The MODWT is also known
as non-decimated DWT, stationary DWT, translation
invariant DWT, and time-invariant DWT due to this.

2.4. Wavelet Scatter Transform

Wavelet Scatter Transform (WST) provides strong
time and frequency localization and is impervious to
translations. It preserves high frequency information
for classification and is akin to Convolutional Neu-
ral Networks (CNN) [33]. The advantage WST has
over CNN is of lesser training time and a smaller
dataset [34].

Let w(t) be the signal, ϕK(t) be the low pass filter
and ΨK be the wavelet. A locally translational invari-
ant of the signal w(t) can be obtained by the convolu-
tion of w(t) and ϕK(t), S0t = ϕK(t) ∗ w(t) [35]. The
wavelet modulus transform recovers the high frequency
components.

|µ1|w = {S0t, |w ∗ΨK1(t)|} . (4)

The first order wavelet scattering coefficients can be
obtained by Eq. (5):

S1tw(t) = {|w ∗ΨK1 | ∗ ϕK(t)} . (5)

The second order coefficients can be obtained by
Eq. (6):

S2tw(t) = {||w ∗ΨK1
| ∗ΨK2

| ∗ ϕK(t)} . (6)

Thus the m-th order scattering coefficients can be
obtained by Eq. (7):

Smtw(t) = {||w ∗ΨK1 ∗ . . . | ∗ΨKm | ∗ ϕK(t)} . (7)

The final scattering matrix aggregates the scattering
coefficients of all orders to form the features of the
input signal.

3. Data Acquisition, Feature
Extraction, Fault Detection
and Classification

Figure 7 illustrates the feature extraction and FD&C
process flow.

3.1. WAMS Based Data Acquisition

The IEEE 39 bus test system model was simulated in
the PowerWorld Simulator [36]. IEEE 39 bus test sys-
tem is a 10 generator, 39 bus system with 34 lines and
12 transformers with a nominal voltage of 345 kV and
system frequency of 60 Hz. Figure 3 shows the one-line
diagram of the test system.

The parameters for the test system model are
from [36].

To simulate faults in the IEEE 39 bus test system,
the PowerWorld Simulator’s Transient stability module
was utilised. Case studies were conducted for no fault,
Single Line to Ground fault (LG), Line to Line (LL),
Line to Line to Ground (LLG), and balanced (LLL)
faults. Signals, voltage, voltage angle, and current are
recorded by varying the fault resistance between 1–50
in steps of 5 Ω and fault locations on the transmission
line in steps of 10 % from 10 to 90. The parameters for
the various fault cases considered are listed in Tab. 1.
For example, an LG fault was inserted on the line con-
necting buses 2 and 25 at 70 % of the line length at 1 s
and cleared at 1.03 s with a resistance of 10 Ω. A LL
fault was inserted on the line between buses 3 and 18
at 80 % of the line length at 1 s and cleared at 1.03 s
with a resistance of 50 Ω. An LLG Fault was inserted
on the line between buses 21 and 22 at 1 s at 40 %
of the line length from bus 21 and cleared after 1.03 s
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161 Mvar 101 Mvar

97 Mvar

Fig. 3: IEEE 39 bus test system.

with a resistance of 50 Ω. A LLL fault was inserted on
the line between buses 21 and 22 at 40 % of the line
length from bus 21 at 1 s and cleared at 1.03 s with
a resistance of 50 Ω. The simulation was run for 5 s
for all the fault cases. The variations of the voltage,
voltage angle, frequency, and current measurements for
the above fault types are as shown in Fig. 5 and Fig. 6.

Tab. 1: Parameters for fault dataset generation.

Parameters Values
Fault type No-fault, LG, LL, LLG, LLL

Fault resistance (Ω) 1, 5, 10, 15, 20, 25, 35, 40, 50
Fault location (% of

the length of the line) 10, 20, 30, 40, 50, 60, 70, 80, 90

During every simulation run, the PowerWorld
Simulator’s dynamic simulator generated IEEE
C37.118.2011 compliant messages, which were col-
lected by the OpenPDC. These messages are stored
in the Historian database of OpenPDC. The data was
extracted from the OpenPDC Historian database as
.csv files and then verified for discrepancies, cleaned,
labelled, and imported into MATLAB. The setup for
WAMS data acquisition is illustrated in Fig. 4.

The created data set contains 24,654 voltage,
voltage-angle, current, current-angle, and frequency
signal samples from the 39 buses. The generated
dataset was divided into a training data set with 15,317
samples and a testing data set with 7134 samples in
a 70 : 30 ratio.

Tab. 2: Distribution of data across classes in the data set for
detecting faults.

Data set No-fault (1) Fault (2)
Training 3868 11,449
Testing 2229 4905

Tab. 3: Distribution of data for different fault types in the data
set for classifying the faults.

Data set NF
(1)

LG
(2)

LL
(3)

LLG
(4)

LLL
(5)

Training 3868 2694 2694 2694 3367
Testing 2229 1154 1154 1154 1443

3.2. Feature Extraction

Features are specific characteristics of the input data.
Many studies on power system data fault analysis have
advocated Wavelet transforms as the most efficient fea-
ture extraction technique for power signal data [7], [8],
[9], [10], [18], [19], [20], [21], [22] and [23]. For sig-
nal data transformation, we used the Discrete Wavelet
Transform (DWT). Using the Daubechies Db4 mother
wavelet, the signals were resolved into five levels of
wavelet coefficients. The following methods were used
to extract the features:

• The statistical characteristics of the wavelet de-
composition of the signal data, such as standard
deviation, range, Root Mean Square value (RMS),
and crest factor. (Waveletstat feature dataset).

• Wavelet Entropy: consists of the entropy values
of the signal data set’s wavelet coefficients deter-
mined using Eq. (8). Shannon Entropy is a mea-
sure of the quantity of information in a variable.
Equation (8) is used to calculate the entropy of
the wavelet coefficients at level j:

WETt =

Lt∑
t=1

pst,k · log (pst,k) , (8)

where Lt is the number of coefficients in the t-th
level and pst,k normalized squares of the wavelet
coefficients at the t-th level.

• Wavelet Energy: The energy (L2 norm) of each
wavelet decomposition at each level is included in
this feature set. The energy of the wavelet decom-
position are computed as follows in Eq. (9):

WEE = ∥ApC∥2 + ∥DtC∥2, (9)

where ApC is the output of the low pass filter,
and DtC is the output of the high pass filter at
the different levels.

• Wavelet Packet Energy: Features are the energy of
wavelet packet coefficients for wavelet packet tree
nodes. This is the sum of the energies (squared L2
norms) for each level of wavelet packets.
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Transient Stability Add-on Module

Configure Fault Type 
(LG, LL, LLG, LLL)

Configure Fault Action 
(Apply or Clear)

Configure Fault 
Insert/Clear Time

Configure line where 
fault to be inserted

Configure location of 
fault on line (% of line 

length)
Run Simulation

Configure duration of 
simulation (for ex: 5  s)

Configure Fault 
Resistance

Power World Simulation System

Load IEEE 39 Bus 
Test System Model

Run Powerflow

A

A B

B

IEEE C37.118 Compliant Messages

Historian CSV Files

OpenPDC System

Fault Detection 
Fault Classification

Fig. 4: Simulation setup for dataset generation.

• Wavelet Packet Entropy: Shannon entropy values
of the wavelet packet coefficients for the wavelet
packet tree nodes.

• MODWT Energy: Energy of the MODWT
coefficients at different levels:

MEE = ∥modwtcoef∥2. (10)

• Wavelet Scattering Transform (WST): WST
coefficients for the input signal with an invariance
scale of 1 are derived as the features.

3.3. Ensemble Feature Extraction

The wavelet energy, wavelet entropy, and statistical
features of wavelet coefficients are used to develop the
following ensemble feature extraction methods.

• Ensemblestatwentropy: An ensemble of statistical
features and entropy values of the wavelet decom-
position of signals.

• Ensemblestatwenergy: An ensemble of statistical
features and energy values of the wavelet decom-
position of signals.

• Ensemblestatwenergywentropy: An ensemble of
statistical features, entropy, and energy of the
wavelet coefficients.

3.4. Fault Detection and
Classification

The identification of faults is a binary classification is-
sue with two classes: no-fault (class 1) and fault (class
2). As indicated in Tab. 2, the fault detection models
were trained using the training data set, and the per-
formance of the detection models was evaluated using
the testing data set. Classification of faults is a multi-
class classification task. The distinct categories in the
data set include No-Fault (NF), Line-to-Ground fault
(LG), Line-to-Line fault (LL), Line-to-Line to Ground
fault (LLG), and three-phase balanced fault (LLL). As
shown in Tab. 3, the fault classification models were
trained and evaluated using data sets with varying class
distributions.

3.5. Placement of PMUs and Sparse
Data

PMUs are not installed on all buses of a power system
to reduce capital costs [37]. The PSAT toolbox for
MATLAB was used for PMU placement [38]. Sixteen
buses were identified by the first depth search algo-
rithm and 14 buses by the graph theoretic procedure
algorithm for placing the PMUs on the 39 bus test
system. Another 9 bus case was considered by plac-
ing PMUs on the generator buses of the IEEE 39 bus
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(a) LG fault.
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(b) LLL fault.

Fig. 5: Voltage, voltage angle, frequency and current signal variations for (a) LG and (b) LLL faults.

system. The different PMU placement cases considered
are:

• PMUs placed on 2, 6, 8, 10, 12, 14, 16, 18, 20, 23,
27, 33, 35, 37, 38, and 39 buses.

• PMUs placed on 4, 8, 16, 28, 31, 32, 33, 34, 35,
36, 37, 38, and 39 buses.

• PMUs placed on 31, 32, 33, 34, 35, 36, 37, 38, and
39 buses.

Datasets were developed with signals from PMUs on,
all the buses (39 bus dataset), 16 buses as identified
by the first depth search algorithm (16 bus dataset),
14 buses as identified by the graph theoretic proce-
dure (14 bus dataset), and the generator buses (9 bus
dataset).
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Fig. 6: Voltage, voltage angle, frequency and current signal variations for (a) LL and (b) LLG faults.

3.6. Noisy Data

References [39] and [40] investigated the presence of
noise in real-world PMU measurements. In [39], the
authors convey that the noise distribution in field PMU
data is Gaussian with a Signal-to-Noise Ratio (SNR) of
45 dB or higher. To approximate real-world measure-
ments, white Gaussian noise with SNRs ranging from
30 dB to 60 dB was added to the measurement data
sets.

4. Results and Discussion

The different feature data sets were derived from the
WAMS data set. The performance analysis of the fea-
ture data sets with SVM, KNN, DT, BTEC, and ANN
classifiers are carried out. The time taken for training,
testing, features extraction from the training dataset,
features extraction from the testing dataset, and the
Accuracy of classification for the different feature data
sets are as shown in Tab. 4. The models were trained
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Tab. 4: List of the performance measures of feature extraction techniques with state-of-the-art classifiers.

FE method Classifier Training
time (s)

Testing
time (s)

Accuracy
(%)

Train+FE
time (s)

Test+FE
time (s)

SVM 29.672 0.054 92.90 29.895 0.152
DT 0.046 0.011 93.69 0.269 0.110

Wavelet-Energy KNN 0.042 0.023 98.95 0.265 0.122
BTEC 9.266 0.831 98.14 9.489 0.930
ANN 9.360 0.017 93.13 9.583 0.116
SVM 312.330 0.413 66.13 312.593 0.588
DT 0.049 0.009 38.38 0.224 70.184

Wavelet-Entropy KNN 0.030 0.014 44.58 0.030 0.189
BTEC 9.725 1.232 40.80 9.725 1.407
ANN 4.130 0.017 53.38 4.130 0.192
SVM 1.325 0.039 99.92 28.285 5.699
DT 0.107 0.025 92.42 27.067 5.685

Wavelet Packet Entropy KNN 0.028 0.568 99.99 26.988 6.228
BTEC 1.138 0.108 99.80 28.098 5.714
ANN 12.768 0.215 66.85 39.728 5.875
SVM 1.438 0.046 99.99 27.913 5.562
DT 0.106 0.008 94.41 27.027 5.524

Wavelet Packet Energy KNN 0.307 0.609 99.86 27.228 6.125
BTEC 10.690 0.998 99.85 37.611 6.514
ANN 4.437 0.194 99.76 31.358 5.710
SVM 9.637 0.466 62.41 28.359 5.562
DT 0.137 0.019 61.00 2.382 1.188

MODWT Energy KNN 0.165 0.080 61.80 2.410 1.249
BTEC 13.524 1.431 61.00 15.769 2.600
ANN 5.273 0.185 48.21 7.518 1.354
SVM 38.852 4.897 99.76 41.349 6.051
DT 2.051 0.014 79.84 4.549 1.168

Wavelet Scattering Transform KNN 0.246 43.833 99.88 2.744 44.987
BTEC 78.732 3.734 90.99 81.230 4.888
ANN 207.140 0.224 96.61 209.638 1.378
SVM 1.979 0.131 99.66 3.069 0.595
DT 0.13 0.006 60.51 1.220 0.47

Ensemblestatwenergy KNN 0.034 0.584 99.76 1.124 1.048
BTEC 11.83 1.030 97.80 12.920 1.494
ANN 11.69 0.020 98.53 12.780 0.484
SVM 1.870 0.064 99.36 2.812 0.527
DT 0.125 0.005 89.68 1.067 0.468

Ensemblestatwentropy KNN 0.042 0.430 99.52 0.984 0.893
BTEC 11.670 1.790 96.40 12.612 2.253
ANN 20.070 0.013 96.15 21.012 0.476
SVM 1.960 0.131 99.69 3.313 0.770
DT 0.126 0.006 90.44 1.479 0.645

Ensemblestatwenergywentropy KNN 0.044 0.599 99.78 1.397 1.238
BTEC 11.440 1.021 97.88 12.793 1.660
ANN 12.860 0.230 97.98 14.213 0.869

and tested on a PC with Intel(R) Core(TM) i7-9750H
CPU @ 2.60 GHz , 64-bit operating system, x64-based
processor, and 32 GB RAM.

The wavelet packet transform-based features showed
superior performance in terms of accuracy. The com-
putational efficiency of this method is poor as the
time taken for feature extraction is very high and this
increases the time to train and test the models.

Wavelet scattering transform coefficients features are
correctly classified with an accuracy of 99.76 % by the
SVM classifier and 99.88 % by the KNN classifier. The
time to train and test the WST feature dataset is very
high.

The ensemble methods showed superior performance
in terms of computational time as well as accuracy.

KNN classifier classified Ensemblestatenergy feature
set with an accuracy of 99.76 % within 1.048 s and
Ensemblestatenergyentropy feature dataset with an
accuracy of 99.78 % within 1.238 s. The classifica-
tion accuracy of SVM with Ensemblestatenergy and
Ensemblestatenergyentropy feature data sets were
above 99.66 % with a testing time of 0.59 s.

The Ensemblestatenergyentropy method was used
to extract features from the 16 bus, 14 bus, and the
9 bus data sets with Gaussian noise of SNR ranging
from 30 dB to 60 dB. The accuracy of classification by
the models trained with sparse and noisy measurement
data sets are as in Fig. 10. The accuracy of classifica-
tion is above 96 % for all the models with a 40 dB
noise level. This validates the efficacy of the ensemble
features for fault classification using WAMS data.
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Fig. 7: Process flow for detecting and classifying faults.
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All the feature data sets were classified with 100 %
accuracy by the fault detection models. The confu-
sion matrix for the fault detection and classification
with the Ensemblestatenergyentropy feature data set
and SVM classifier are shown in Fig. 8 and Fig. 9.

5. Conclusion

The performance of a machine learning classifier is pre-
dominantly dependent on the input data. The feature
data set provided as input has a significant impact on
the performance of the classifier model. The proposed
ensemble feature dataset comprises statistical features
of wavelet coefficients, energy, and the entropy values
of the wavelet coefficients. The performance of this
ensemble feature method is validated and found
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to be superior when compared to wavelet en-
tropy, wavelet energy, wavelet packet entropy, energy
values of MODWT coefficients, and wavelet scattering
transform coefficients.

For today’s complex power grid with the dispersed
generation, fault analysis methodologies that may of-
fer power system operators with a large area situation
awareness viewpoint are needed. When creating and
implementing these intelligent models for fault diag-
nosis on the smart grid, the computational efficiency
of the machine learning models should be prioritised.
The presented ensemble features data set for fault clas-
sification was categorised by the SVM classifier with
an accuracy of 99.69 % in 0.56 s. Since the latency
is within the acceptable range for backup protection
of power transmission lines, these models can serve as
critical components of power system backup protection
systems for speedy fault resolution.
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