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Abstract. The application of Electric Vehicles (EVs)
is increasing in many countries, causing many
researchers to focus on EV Rapid Charging Station
(RCS) related issues. The optimal planning of RCS
considering only distribution networks is not a reli-
able approach. Moreover, the RCS location should
be convenient to the EV user in a given EV driv-
ing range and the performance of the distribution sys-
tem. In this paper, a multi-objective approach for
optimal planning of RCS and Distributed Generators
(DG) in a distributed system coupled with a trans-
portation network is analyzed. The proposed opti-
mal planning method aims to achieve reduced active
power loss, EV user costs, and voltage deviation for
effective RCS and DG planning. The approach in-
cludes the analysis of the test system with the base case,
solo planning of RCS, planning of DGs with fixed RCS,
and simultaneous optimal planning of RCS and DGs.
Daily load variation at buses and hourly charging
probability of EVs have been used in the analysis.
IEEE 33 bus distribution system superimposed with
a 25-node transportation network is considered the test
system. Rao 3 algorithm is applied for optimization,
and the results have been compared with PSO
and JAYA algorithms.

Keywords

Distributed Generator, distribution system,
electric vehicle, Rao 3 algorithm, Rapid Charg-
ing Station.

1. Introduction

Greenhouse gas emission, depletion of fossil fuels,
and growing oil prices are favouring the choice of EVs
for transportation [1]. The deployment of 20 million
Electric Vehicles (EVs) globally was a promising
beginning to reduce greenhouse gas emissions by 2020.
Such a global deployment of EVs will replace 62 %
of fleet vehicles by 2050 [2]. Although EVs have several
advantages, they also have the drawback of low driving
range. The charging time and limited driving range
of EVs are the major reasons for the slow expansion
of EVs [3]. Installing proper charging infrastructure
can mitigate the problem of low driving range. There
are three charging methodologies, among them level
1 and level 2 take a few hours for charging while DC
rapid charging takes 15–20 minutes for charging [4].
So the deployment of RCS can make the customers
switch to EVs as RCS can quickly charge. However,
the growth of the EV population creates a negative
effect on power sector [5]. The placement of RCS
at improper locations can further enhance
the harmful impact on the distribution system that
alters the healthy operating conditions of the power
system [6].

The RCS hurts the distribution system. In the lit-
erature, most of the authors concentrated on the mini-
mization of power loss and voltage deviation as objec-
tives to support distribution systems in the presence
of charging stations. In [7], minimization of invest-
ment cost, connection cost, total cost of losses, and De-
mand Response (DR) cost were used as objectives for
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placing RCS optimally. The concept of an incentive-
based demand response program was used to achieve
the objective. For the best positioning of charging sta-
tions and distributed generators, the author in [8] used
hybrid grey wolves and the particle swarm optimization
method. The authors of [9] proposed a methodology for
scheduling EV in both V-G and G-V modes in the pres-
ence of DG to reduce network power loss and enhance
the voltage profile. In [10], the authors have proposed
a two stage approach for optimal planning of Dis-
tributed Generators (DGs), Shunt Capacitors (SCs)
and charging stations with grass-hopper optimization
based fuzzy multi-objective technique. The optimal
planning of DGs and SCs have been done in the first
stage and the planning of CS is done in the second
stage.

The above literature considered electrical networks
only as a test system. However, considering of only
electrical networks for charging station placement is
not a credible approach. As there is a require-
ment for placing Rapid Charging Stations (RCS)
along urban roads to increase the utilization of EVs,
there is a necessity to consider the road network along
with electrical network.

Very few authors have considered both electrical
and road networks for optimal planning of charg-
ing stations. The author of [11] proposed a method
for positioning and sizing the Fast Charging Station
(FCS). In addition, to reducing power loss and wait-
ing times, FCS positioning is done as efficiently as
possible to compensate for reactive power. In [12],
the best site for Charging Stations (CS) was deter-
mined by minimizing power loss and EV energy loss
incurred during the trip to CS. The queuing theory
was employed by the author to capture the dynamic be-
havior of CS serviceability. In [13], [14], [15], and [16],
authors formulated the multi objective problem for op-
timal planning of charging stations. In [13], optimal
planning was done with the goals of reducing volt-
age variation and power loss, maximization of EV flow
supplied by the fast-charging station with confirming
the impact of service radius and waiting time on plan-
ning. In [14], the authors applied meta-heuristic
algorithms to solve the problem to reduce energy loss,
voltage deviation and to minimize the land cost to sup-
port maximum EVs with low establishment cost. Min-
imization of the VRP (Voltage deviation, Reliability,
and Power loss) index, installation and operation cost,
and improving accessibility index was considered for
optimal planning of charging stations in [15]. In [16],
the authors used the NSGA algorithm for the simulta-
neous placing and sizing of FCS. Minimization of in-
vestment cost, energy losses, waiting time for charging,
and maximization of captured traffic flow are
considered for optimal planning.

In [17], the author used a heuristic technique for
optimal planning of DGs and D-statcom. Voltage
Stability Index (VSI) was considered for optimal plan-
ning of D-statcom and Loss sensitivity factor is used
for optimal planning of DGs. In [18], the author
used multi-objective bat algorithm for optimal plan-
ning of DGs, here maximization of voltage sensitiv-
ity index is used for optimal placement and the mini-
mization of total active power loss is used for optimal
sizing of DGs. In [17] and [18], the authors placed
DGs in the Distribution System (DS) for improving the
performance of DS.

In the literature, authors in [7] considered only DS
for RCS planning and authors in [8], [9] and [10]
planned RCS and DGs on DS only. Authors in [11],
[12], [13], [14], [15], and [16] considered coupled net-
work for planning, and yet only RCS is optimally
planned. However, optimal planning of RCS and DGs
has to be done on superimposed network of electri-
cal network and road network. Because EV users
always choose the closest RCS to charge their vehi-
cles, considering the road network is crucial for effective
planning. Even when RCS is positioned at the opti-
mal locations, their presence would increase power loss
and voltage deviation. In this regard, DG integration
is a feasible solution to address the aforementioned is-
sues. Hence, in this paper, both the electrical network
and the road network were taken into consideration
while determining the best location for RCS and DGs.
In addition to the other two goals of minimizing ac-
tive power loss and voltage deviation, the placement
also considered customer convenience through the min-
imization of EV user costs. Mostly in literature, au-
thors used the grey wolf optimization algorithm, grass
hopper optimization algorithm, chicken swarm opti-
mization, and their hybrid forms for finding optimal
solutions. However, most algorithms are parameter de-
pendent and require better tuning of parameters for
finding optimal and accurate solutions. In this paper,
the authors used parameter less novel Rao 3 algorithm
for obtaining the optimal solutions.

The main contributions of this paper are listed
below.

• The optimal placement and sizing of RCS and DGs
have been done on the superimposed electrical
and road network. Integration of DGs in a distri-
bution system counters the negative effects caused
by the presence of RCS.

• Minimization of Electric vehicle energy loss for
travelling from the current position to the charg-
ing station location is adequately dealt with.

• The analysis takes into account different
load types, their variation over 24 hours,
and the probability of daily hourly EV charging.
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• For getting the best RCS and DG locations
and sizes in a superimposed network, three cases
are taken into consideration: case 1 is optimal
RCS planning alone; case 2 is optimal DG plan-
ning with case 1’s fixed RCS locations and sizes;
and case 3 is concurrent optimal RCS and DG
planning.

• For the goal of tackling an optimization
issue, the novel Rao 3 algorithm is chosen,
and the solutions are compared with those
obtained using the PSO and JAYA algorithms.

The organization of the remaining paper is as fol-
lows: DG modelling and objective function formulation
are explained in Sec. 2. Section 3. explains Rao 3,
Jaya algorithms, and flow chart of implementation
of Rao 3 algorithm for solving the problem. Results
are discussed in Sec. 4. , followed by conclusions in
Sec. 5.

2. Problem Formulation

2.1. DGs Modeling

PV or PQ modelling can be used to model dis-
tributed generators. In this paper, PQ (negative load
model) mode has been taken for modelling DGs. Here
the quantities that are emphasized real power output
(Pdg) and power factor (p.f). Reactive power out-
put (Qdg) can be calculated from the relation govern-
ing real power, reactive power, and power factor as
shown in Eq. (1). Eq. (2) and Eq. (3) show the cal-
culation of real effective load (Peffectiveload) and reac-
tive effective load (Qeffectiveload) at distribution buses,
respectively.

Qdg = Pdg tan(cos
−1(pf)), (1)

Peffectiveload = Pload − Pdg, (2)

Qeffectiveload = Qload −Qdg. (3)

2.2. Multi Objective Function
(MOF)

In this paper, the minimization of active power loss,
EV user cost and voltage deviation were considered for
optimal planning of charging stations and DGs. Here
the weighted multi-objective formulation was done
with equal weights.

MOF = min(w1APLRI +w2MVDRI +w3EV UCI).
(4)

In Eq. (4) w1, w2, and w3 are weights between [0,1]
and the sum of these weights needs to be 1. In this

paper, equal weights are considered for all individual
objectives.

1) Active Power Loss Reduction Index
(APLRI)

Power flow in a distribution system causes active Power
loss (Ploss). The addition of Rapid Charging Sta-
tions (RCS) to the distribution system puts more
strain on the network, resulting in higher power losses
and voltage magnitude degradation of buses. Further,
the placement of RCS at improper places increases
losses abnormally and alters the healthy voltage pro-
file. Usually, RCS is considered as the load at the power
distribution substation. Mathematically, the load due
to EVs at ith RCS (CSi

load) is calculated as per Eq. (5).
The connectors at ith RCS (CSi

connectors) and the ca-
pacity of ith RCS (CSi

capacity) are calculated using
Eq. (6) and Eq. (7), respectively. Power losses can be
reduced by minimizing the Active Power Loss Reduc-
tion Index (APLRI). Here APLRI (Eq. (8)) is the ratio
of daily Ploss after the placement of CS or DG or both,
to the daily Ploss before the placement of both.

CSi
load = N iCS

ev , (5)

CSi
connectors = max(Pevc)N

iCS
ev , (6)

CSi
capacity = CSi

connectorsRc, (7)

APLRI =

∑24
t=1 P

fcs/dg
loss∑24

t=1 Ploss

. (8)

2) EV User Cost Index (EVUCI)

Electric vehicle user has a choice to select the nearest
RCS to charge their EV. This decision not only helps
the user but also reduces the energy loss from travel-
ling to the RCS. Consider m possible charging station
locations and q charging demand nodes which belong
to road network nodes. The selection of RCS in opti-
mal planning is done by the calculation of the distance
between qth demand node to all available RCS and is
stored in D matrix with the order of [q, z] z ∈ m. Af-
ter comparing the distances of qth demand node to all
RCS, EVs present at the demand node are assigned
to the nearest RCS and the corresponding distance is
stored in DD matrix. Here DD matrix has the order
of [q, 1].

D =


d1c1 d1c2 . . . d1cz
d2c1 d2c2 . . . d2cz

...
...

...
...

dqc1 dqc2 . . . dqcz

 , DD =


min()
min()

...
min()

 ,

(9)
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d=[d1, d2, . . . , dq] is the set of demand points,
c=[c1, c2, . . . , cm] is the set of charging nodes belonging
to road network nodes. EV user cost can be calculated
from Eq. (10). Here Nev(i) is total number of EVs
at ith RCS, EC is the energy consumption of EVs
and Pe is the electricity price.

EV usercost =

q∑
n=1

DD(i)Nev(i)ECPe. (10)

Calculating the distance from qth demand node
to all m charging nodes and choosing the longest dis-
tance among them offers the maximum distance that
an EV customer must travel from the qth demand node.
DDmax is the result of forming a DD matrix for max-
imum distances. The values of maximum EV user loss
cost and EV user cost index are given by the Eq. (11)
and Eq. (12).

EV max
usercost =

q∑
n=1

DDmax(i)Nev(i)ECPe, (11)

EV UCI =
EV usercost

EV max
usercost

. (12)

3) Maximum Voltage Deviation Reduction
Index (MVDRI)

Loading the distribution system with RCS can cause
a deviation of voltage beyond its limits. The AC
load flow gives the value of the voltage at each bus.
The maximum voltage deviation (V Dmax) can be
calculated using Eq. (13).

Maximum voltage deviation:

V Dmax = max(1− v(i)), i = 1, 2, 3, . . . , Ndistnodes.
(13)

MVDRI refers to the ratio of maximum voltage devi-
ation over the day with the integration of RCS/DG or
both to the maximum voltage deviation over the day
without the integration of both RCS and DG. It is
calculated as follows:

MVDRI =

∑24
t=1 V D

RCS/DG
max , t∑24

t=1 V Dmax, t
. (14)

2.3. System Constraints

Each RCS must have atleast one charging connector
to supply the EVs, and Eq. (15) support this con-
straint. Eq. (16) and Eq. (17) are the real reac-
tive power balance constraints, respectively in the sys-
tem. Integration of RCS alters the voltage profile,
so there is a need to check voltage limits in opti-
mal planning. Eq. (18) adds the voltage limits as

a constraint. Each DG has maximum and minimum
capacity limits (Eq. (19)), and the maximum total ca-
pacity supplied by all DGs(PT,max

DG ) is a user-defined
quantity and should be less than the minimum total
real power consumption throughout a day (Eq. (20)).

CSi
connector ≥ 1 i = 1, 2, . . . , z(numberof RCS),

(15)

Psub +
∑

Pdg = PD +
∑

PRCS + Ploss, (16)

Qsub +
∑

QDG = QD +Qloss, (17)

|Vmin| ≤ |Vn| ≤ |Vmax| n = 1, 2, . . . , Nbus, (18)

Pmin
dg ≤ Pa,dg ≤ Pmax

dg , a = 1, 2, . . . , NDG, (19)

NDG∑
a=1

Pa,DG ≤ PT,max
DG < min(Pn,D). (20)

Here Psub and Qsub are the substation real power
and reactive power respectively. PD, QD, Ploss

and Qloss are real power demand, reactive power de-
mand, real power loss and reactive power loss in a taken
test system. Here RCS are considered as only real
power loads, it is (PRCS) equal to CSi

load. Vmin,
Vmax, Pmin

dg and Pmax
dg are the voltage minimum limit,

voltage maximum limit, DGs minimum real power
limit and DGs maximum real power limit respectively.
PT,max
DG is the maximum limit of total active power sup-

plied by all DGs. Pn,D real power demand at nth node
of the distribution system.

3. Algorithm

3.1. Raos 3 Algorithm

Rao 3 algorithm was proposed by Rao in 2020 [19].
The algorithm is easy to understand and has the ad-
vantage of metaphor-less and few algorithm-specific
parameters. The principle behind this algorithm is
random interaction between the candidate solutions,
and the candidate solutions move towards the best so-
lutions and away from the worst solutions in the opti-
mization process. This algorithm is a population-based
technique and updates equations in each iteration as
shown below.

X
′

i,j,k = Xi,j,k + r1j,k(Xj,best,k − |(Xj,worst,k)|)+

+r2j,k((|Xi,j,korXr,j,k|)− (Xr,j,korXi,j,k)).
(21)

Here X
′

i,j,k is the updated solution
of ith candidate, jth variable in kth

iteration. Xi,j,k is the solution of ith candidate,
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jth variable in kth iteration, r1, r2 are random
values between [0,1]. Xj,best,k is the best value
of jth variable of X in the kth iteration. Xj,worst,k

is the worst value of jth variable of X in the kth

iteration. Xr,j,k randomly selected rth candidate,
jth variable in kth iteration. The flowchart of the Rao 3
algorithm for optimal planning is shown in Fig. 1.

Read the system data, initialize the algorithm parameters and system 
constants.

start

Initialize feasible population according to cases, evalute the fitness 
values.

Obtain the best and worst values based on the fitness value.

Set gen=1

stop

Consider updated solution 
and discard old solution

f=fnew

X=Xnew

Consider old solution and 
discard updated solution

f=fold

X=Xold

gen=gen+1

Yes No

Update the population according to 
RAO 3 update equation and evaluate 

the fitness function.

If (fnew <fold)

If (gen>MaxGen)
Yes No

Fig. 1: Flowchart for implementation of Rao 3 algorithm.

Lcspop =


X1,1 X1,2 . . . X1,z

X2,1 X2,2 . . . X2,z

...
...

...
...

Xpop,1 Xpop,2 . . . Xpop,z

 , (22)

Ldgpop =


Y1,1 Y1,2 . . . Y1,n

Y2,1 Y2,2 . . . Y2,n

...
...

...
...

Ypop,1 Ypop,2 . . . Ypop,n

 , (23)

Sdgpop =


S1,1 S1,2 . . . S1,n

S2,1 S2,2 . . . S2,n

...
...

...
...

Spop,1 Spop,2 . . . Spop,n

 . (24)

Initcspop = [Lcspop] is the matrix used for opti-
mal planning of only RCS (Case 1). This matrix

consist of feasible locations of RCS in a distribu-
tion system. Initdgpop = [Ldgpop, Sdgpop] is the ma-
trix consisting of randomly initialized feasible loca-
tions and the corresponding size of DGs used in or-
der to plan DGs in the distribution system optimally
(Case 2). Initcsdgpop = [Lcspop, Ldgpop, Sdgpop] is
the matrix that consists of RCS location, DG loca-
tion and the corresponding DG size. It is utilised
to plan RCS and DGs at the same time to get
the best results (Case 3). Here X indicates the
location of RCS, Y indicates the location of DG and S
indicates the size of the DG.

3.2. Jaya Algorithm

Rao proposed the Jaya algorithm [20], which
is a population-based meta-heuristic algorithm.
The premise of this algorithm is that the solution
to an optimization problem goes towards the global
best solution while avoiding the worst solution.
It has the advantage that it requires only the com-
mon control parameters which are: population size
and maximum iterations, and it does not require any
algorithm-specific parameter setting.

The modified value of kth candidate ith variable
in jth iteration is obtained using the Eq. (25) given
below:

x′
k,i,j = xk,i,j + r1i,j(xbest,i,j − xk,i,j)+

−r2i,j(xworst,i,j − xk,i,j).
(25)

Here x′
k,i,j is the modified kth candidate, ith variable

in jth iteration, xk,i,j is the present kth candidate, ith
variable in jth iteration. r1, r2 are the random values
between 0 and 1 i.e. [0 1]. xbest,i,j is the best solution
of ith variable among all candidates in jth iteration.
xworst,i,j is the worst solution of ith variable among
all candidates in jth iteration. If the objective value
yield by the modified x′

k,i is better than xk,i, then
the modified candidate solution is accepted in each
iteration. Acceptable solutions are kept in each
iteration, and subsequent searches are based
on the solutions in the following iteration. When
the termination criteria are met, the final optimal
solutions are achieved.

4. Simulation Results
and Analysis

Superimposed IEEE 33 bus electrical system and 25
node road network were treated as test system [15], as
shown in Fig. 2. All the buses in IEEE 33 bus test
system were segregated as 17 residential load buses,

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 497



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 20 | NUMBER: 4 | 2022 | DECEMBER

9 industrial load buses and 5 commercial load buses
shown in Tab. 1. Bus data and line data were taken
from [21]. The hourly load at various buses vary
according to the load patterns (in p.u.) as shown
in Fig. 3. The data regarding road network was taken
from [22], and 1 km per unit was considered. Super-
imposed nodes of the distribution network and road
network were taken from [15], which are represented
in Tab. 3.

1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 26 27 28 29 30 31 32 33

23 24 25

1

7
5

15

16
1211

1719

182021

252423

22

14

10

8

4

9

3

2

6

13

7

Fig. 2: Super imposed IEEE 33 bus distribution system with
25 node road network.
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Fig. 3: Plot of different types of load patterns.

Tab. 1: Identification of types of load buses.

Residential Commercial Industrial
loads loads loads

2, 3, 5, 6 4, 11, 12, 18 22, 26, 27, 28
7, 8, 9, 10 19 29, 30, 31, 32

13, 14, 15, 16 – 33
17, 20, 21, 23, 24 – –

Tab. 2: Electric vehicle technical parameters.

Parameter Value
Total number of EVs (NTEV ) 238
Connector rating (Rc) (kW) 96

EV battery capacity (Pb) (kWh) 50
Energy Consumption (EC) (kWh·km−1) 0.219

Electricity Price (Pe) ($·MWh−1) 87.7

The total assumed EV population at road network
nodes was 238, and were allowed to charge at selected
charging stations according to the probability of EV

charging shown in Fig. 4. Table 4 gives the assumed
number of EVs present at the nodes of the road net-
work. In this work, all 25 road network nodes were
considered demand nodes. For all optimization algo-
rithms, 100 maximum generations and 30 population
size are considered. For the PSO algorithm inertia con-
stants C1 = C2 = 2 are considered. Simulations were
carried out on PC with windows 10 operating system,
4 Gb ram, and MATLAB 2014b software.

Tab. 3: Coupling of the road network nodes (Rn) with
the distribution network nodes (Dn).

Dn Rn Dn Rn

03 09 20 04
06 08 23 22
14 11 26 05
16 12 28 07
17 16 30 06

Time (hours)
0 5 10 15 20 25

0

0.02

0.04

0.06

0.08

0.1
P
ev
c

Fig. 4: Variation of Electric Vehicle charging probability.

In this paper, the analysis was done by considering
the base case, case 1, case 2, and case 3.

• Base case: In this case, the load flow was done
on the distribution system without the integration
of RCS and DG to find daily active power loss
and maximum voltage deviation.

• Case 1: In this case, optimal placement and siz-
ing of RCS is done on the superimposed network
to minimize the EV user cost, active power loss
and voltage deviation.

• Case 2: The load due to the charging stations
from case 1 is added to the current load at the cor-
responding distribution bus in case 2. In this
system, optimal placement and sizing of DGs are
done to minimize the EV user cost, active power
loss and voltage deviation.

• Case 3: In this case, concurrent placement
and sizing of RCS and DGs are done to minimize
the active power loss, EV user cost and voltage
deviation.
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Tab. 4: Assumed EVs present at road network nodes.

Rn EVs Rn EVs Rn EVs Rn EVs Rn EVs
1 5 6 8 11 3 16 15 21 9
2 9 7 15 12 3 17 8 22 12
3 13 8 6 13 10 18 6 23 15
4 8 9 4 14 12 19 7 24 5
5 5 10 15 15 15 20 15 25 15

4.1. Base Case

The test system consists of IEEE 33 bus distribution
system. As it is radial and has a high R/X ratio,
the feed forward and backward sweep load flow algo-
rithm was used for load flow study. In the base case,
the distributed load flow study was simulated without
the integration of RCS and DGs into the test system
by considering hourly load patterns of different load
types over 24 hours.

It was observed that the load flow led to daily active
power loss of 2811 kW and daily maximum voltage de-
viation of 1.5816 (p.u.). The lowest voltage of 0.8968
(p.u.) was observed at 18th node in 17th hour. Voltage
profile over 24 hours is as shown in Fig. 5

V
ol

ta
ge

 (p
.u

.)

0.8

0.85

0.9

0.95

1
1 hour
2 hour
3 hour
4 hour
5 hour
6 hour
7 hour
8 hour
9 hour

10 hour
11 hour
12 hour
13 hour
14 hour
15 hour
16 hour
17 hour
18 hour
19 hour
20 hour
21 hour
22 hour
23 hour
24 hour

Bus number
0 5 10 15 20 25 30

Fig. 5: Distribution system voltage profile in base case.

4.2. Case 1: Optimal Planning
of RCS

Case 1 deals with the optimal placement and sizing
of RCSs. The placement was done based on the follow-
ing assumptions:

• The superimposed nodes are considered for RCS
placement.

• RCS can be placed at 3 buses and it is ob-
served that placement at more than 3 buses makes
the system unstable.

In case 1, RCS was optimally planned. In optimal
planning, primarily all EVs were distributed among
the initialized RCS locations to minimize EV user costs
by selecting the nearest RCS. After adding the RCS

load, the distribution load flow algorithm is applied
to the test system to find Ploss and MVD. To min-
imize the considered multi-objective function various
algorithms are applied. It is observed from Tab. 5 that,
distribution system performance is affected by RCS in-
stallation. Daily active power loss increased by 19.5 %,
12.1 %, and 9.73 % compared with the base case Ploss,
obtained using PSO, JAYA, and Rao 3 algorithms,
respectively. The presence of RCS is also witnessed
with the increased value of MVD (1.6120 (p.u.))
in comparison with base case MVD (1.5816 (p.u.)).
Here Rao 3 algorithm gave the least MVD compared
to the other two algorithms. The system’s minimum
voltage was 0.8949 (p.u.), which appeared at the 18th

bus in the 17th hour using the Rao 3 algorithm, as
shown in Fig. 6.

Tab. 5: Comparison of various algorithms for optimal
allocation of RCS in case 1.

Parameter PSO JAYA Rao 3
CS locations 23,20,30 23,20,26 20,23,3

EVs 129,50,59 144,76,18 105,114,19
Connectors 13,5,6 14,8,2 11,11,2
Size (kW) 1248,480,576 1344,768,192 1056,1056,192
Ploss (kW) 3359.8 3151.8 3084.6
EVUC ($) 34.0335 36.1270 36.3383

MVD (p.u.) 1.6608 1.6271 1.612
APLRI 1.1952 1.1212 1.0973
EVUCI 0.3643 0.3867 0.3890
MVDRI 1.0501 1.0288 1.0193
MOF 0.8690 0.8447 0.8343

Time (sec) 250.4 169.3 155.6
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Fig. 6: Distribution system voltage profile in case 1.

RCS placement caused, the downfall of system min-
imum voltage from 0.8968 (p.u., base case) to 0.8949
(p.u.). EVUC is 36.3383 $ with Rao 3 algorithm which
is high among EVUC of PSO and JAYA algorithms.
However, the overall objective function value of 0.8343

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 499



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 20 | NUMBER: 4 | 2022 | DECEMBER

by the Rao 3 algorithm is the lowest in comparison
with the JAYA algorithm (0.8447) and PSO algorithm
(0.8690). Rao 3 algorithm took less time for evolution
compared to PSO and JAYA algorithms. To counter
the effects caused by RCS installation in the distribu-
tion system DGs are installed.

4.3. Case 2: Optimal Planning
of DGs

Installing DGs in the distribution system reduces
power loss and improves voltage profile. Renewable
type DGs of size 5 kW–1 MW are considered for inte-
gration. It has been observed that integration of three
DGs in a distribution system outperforms integration
of single DG or two DGs. It’s also been observed that
adding more than three DGs to a distribution system
doesn’t significantly increase performance. As a result,
three DGs were considered in this study. The hourly
total real load demand on the system, which includes
RCS load and the hourly charging probability of EVs,
is depicted in Fig. 7. According to this plot, the min-
imum real power load demand of 1420.8 kW appeared
at the 4th hour. As a result, the total real power
injection by all DGs is limited to less than or equal
to 1400 kW (<1420.8) according to the constraint
Eq. (20).

Time (hours)
0 5 10 15 20

0

1000

2000

3000

4000

5000

6000

With out RCS load

With RCS load

R
ea

l P
ow

er
 D

em
an

d
 (

k
W

)

Fig. 7: Plot of hourly varying load demand with and with out
RCS load.

Tab. 6 shows the optimal placements, DG sizes,
and numerous technical observations. When com-
pared to the base case, active power loss was re-
duced to 38.42 % in case 2. This reduction was aided
by the insertion of DGs in the distribution system.
The PSO and JAYA algorithms reduced active power
loss by 40.06 % and 39.45 %, respectively, but the opti-
mal placements and sizes of DGs obtained by the Rao 3
algorithm reduced active power loss to the maxi-
mum in comparison with the other two algorithms.
The maximum voltage deviation with the Rao 3 algo-
rithm was 0.5215 (p.u.), which is higher than the 0.5151
(p.u.), 0.5162 (p.u.) of the PSO, and JAYA algorithms,
respectively.

Furthermore, as compared to 0.3718 of PSO
and 0.3699 of JAYA, the Multi-Objective Function
(MOF ) with the Rao 3 algorithm was 0.3675, which
was the lowest value. The voltage profile at all buses
throughout the day is depicted in Fig. 8, with the DGs
placed at optimal locations and sizes using the Rao 3
algorithm. A minimum voltage of 0.9626 (p.u.)
appeared at the 30th bus in the 19th hour, according
to Fig. 8. The lowest voltage at the 18th bus improved
from 0.8968 (p.u. base case) to 0.9627 in the 17th hour
(p.u.). The placement of DGs in the proper locations
is responsible for this improvement. When compared
to the PSO and JAYA algorithms, Rao 3 produced
efficient outcomes in the shortest time.

Tab. 6: Comparison of various algorithms for optimal
allocation of DGs in case 2.

Parameter PSO JAYA Rao 3
DGs locations 15,33,5 33,15,8 33,15,12

Size (kW) 609,784,5 793,554,52 773,429,196
Ploss (kW) 1126.3 1108.9 1080
EVUC ($) 36.3383 36.3383 36.3383

MVD (p.u.) 0.5151 0.5162 0.5215
APLRI 0.4007 0.3945 0.3841
EVUCI 0.3890 0.3890 0.3890
MVDRI 0.3257 0.3264 0.3297
MOF 0.3718 0.3699 0.3675

Time (sec) 274.2 136.1 130.5

4.4. Case 3: Concurrent Optimal
Planning of RCS and DGs

In this case, the Rao 3 algorithm was used to plan
RCS and DGs at the same time. RCS location, DG
location, and DG size make up the initialization ma-
trix. The system was examined for improved overall
objective function once these two were added. Tab. 7
shows the optimal results by the various algorithms.
The Rao 3 algorithm was shown to generate a bet-
ter MOF of 0.3441. The daily active power loss
was 1079.2 kW, or 38.39 % of the base active power
loss. In comparison to the PSO and JAYA algorithms,
the Maximum Voltage Deviation (MVD) was 0.5960
(p.u.), which was the lowest of the values. With
the Rao 3 algorithm, EV user cost of an electric vehicles
was 25.3715 $, which is cost - effective when compared
to the 42.3306 $ and 31.1142 $ for PSO and JAYA,
respectively.

The system’s voltage profile is shown in Fig. 9,
with the RCS and DGs placed simultaneously using
the Rao 3 algorithm. At 16th bus in 20th hour, the sys-
tem’s minimum voltage is 0.9518 (p.u.). The voltage
improved from 0.8968 (p.u., base case) to 0.9629 (p.u.)
at the 18th bus in the 17th hour. When compared
to the other two algorithms, the Rao 3 algorithm takes
less time to simulate and produce optimal results.
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We know from Tab. 8 that, daily active power loss
is gradually reduced from case 1 to case 3. Though
the maximum voltage deviation is slightly higher
in case 3 compared to case 2, EVUC and overall ob-
jective function are the smallest of all cases (case 1
and case 2) in case 3. Based on these findings, it can
be inferred that using the Rao 3 algorithm to plan RCS
and DGs concurrently (case 3) generated the best out-
comes.

Tab. 7: Comparison of various algorithms for concurrent
optimal allocation RCS and DGs in case 3.

Parameter PSO JAYA Rao 3
CS locations 20,28,16 23,20,6 16,20,23

EVs 44,112,82 104,40,94 67,73,98
Connectors 4,11,8 10,4,9 7,7,10
Size (kW) 384,1056,768 960,384,864 672,672,960

DGs locations 13,11,30 14,31,30 31,11,17
Size(kW) 514,69,791 569,461,151 615,389,395

Ploss (kW) 1271.9 1219.2 1079.2
EVUC ($) 42.3306 31.1142 25.3715

MVD (p.u.) 0.8192 0.6714 0.5960
APLRI 0.4525 0.4337 0.3839
EVUCI 0.4531 0.3331 0.2716
MVDRI 0.5179 0.4245 0.3768
MOF 0.4745 0.3971 0.3441

Time (sec) 298.8 160.1 148.06
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Fig. 8: Distribution system voltage profile in case 2.
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Fig. 9: Distribution system voltage profile in case 3.
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Fig. 10: Convergence characteristics by various algorithms
in case 1.

Tab. 8: Comparison of Ploss, MVD, and EVUC in various cases
by Rao 3 algorithm.

Parameter Base case Case 1 Case 2 Case 3
Ploss (kW) 2811 3084.2 1080 1079.3
MVD (p.u.) 1.5816 1.6120 0.5215 0.5960
EVUC ($) – 36.3383 36.3383 25.3715

MOF – 0.8343 0.3675 0.3441
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Fig. 11: Convergence characteristics by various algorithms
in case 2.
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Fig. 12: Convergence characteristics by various algorithms
in case 3.

5. Conclusion

Adopting electric vehicles for road transport is a feasi-
ble way to reduce greenhouse gas emissions. Although,
RCS promotes EV sales, it can harm the distribution

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 501



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 20 | NUMBER: 4 | 2022 | DECEMBER

system by increasing power loss and voltage deviation.
It is important to consider EV user behaviour for RCS
planning when installing charging stations. To address
these issues, this paper presents a concise planning
of RCS and DG to reduce power loss, voltage deviation,
and EV user cost on a coupled network. The optimal
RCS planning is analysed and compared for the follow-
ing scenarios: i) RCS alone, ii) Optimal DG planning
with the prior RCS outcomes. iii) Concurrent planning
of RCS and DGs. The proposed RCS planning is imple-
mented by considering daily EV charging probability
and load patterns. The use of the metaphasorless Rao 3
algorithm can ensure faster convergence with better
performance for the optimal planning of RCS and DGs
simultaneously. Random interactions between candi-
date solutions and the ability to move candidate so-
lutions towards the best optimal solution and away
from the worst solution of the Rao 3 algorithm out-
perform PSO and Jaya algorithms. Future research
could include adding reactive power support by the
capacitor placement in the test system and analysing
the distribution system performance of such a system.

Author Contributions

V.V. performed the analytic calculations, numerical
simulations and writing. V.C. supervised the project
and contributed to the design and implementation
in addition to writing and editing. Both V.C.
and V.K. authors contributed to the final version
of the manuscript.

References

[1] AHMAD, F., M. S. ALAM, I. S. ALSAIDAN
and S. M. SHARIFF. Battery swapping station
for electric vehicles: opportunities and challenges.
IET Smart Grid. 2020, vol. 3, iss. 3, pp. 280–286.
ISSN 2515-2947. DOI: 10.1049/iet-stg.2019.0059.

[2] Electric Power Research Institute, Natural
Resources Defense Council and Charles Clark
Group. Environmental Assessment of Plug-In
Hybrid Electric Vehicles: Volume 1: Nation-
wide Greenhouse Gas Emissions. In: U.S.
Department of Energy [online]. 2007. Avail-
able at: https://www.energy.gov/sites/
prod/files/oeprod/DocumentsandMedia/
EPRI-NRDC_PHEV_GHG_report.pdf.

[3] KHAN, W., F. AHMAD and M. S. ALAM. Fast
EV charging station integration with grid ensuring
optimal and quality power exchange. Engineering
Science and Technology, an International Journal.

2019, vol. 22, iss. 1, pp. 143–152. ISSN 2215-0986.
DOI: 10.1016/j.jestch.2018.08.005.

[4] FOX, G. H. Electric Vehicle Charg-
ing Stations: Are We Prepared? IEEE
Industry Applications Magazine. 2013,
vol. 19, iss. 4, pp. 32–38. ISSN 1077-2618.
DOI: 10.1109/MIAS.2012.2215652.

[5] KHOOBAN, M. H., M. SHASADEGHI,
T. NIKNAM and F. BLAABJERG. Analy-
sis, control and design of speed control of electric
vehicles delayed model: multi-objective fuzzy
fractional-order controller. IET Science, Mea-
surement & Technology. 2017, vol. 11, iss. 3,
pp. 249–261. ISSN 1751-8830. DOI: 10.1049/iet-
smt.2016.0277.

[6] YE, R., X. HUANG, Z. CHEN and Z. JI.
A hybrid charging management strategy for
solving the under-voltage problem caused
by large-scale EV fast charging. Sustain-
able Energy, Grids and Networks. 2021,
vol. 27, iss. 1, pp. 1–10. ISSN 2352-4677.
DOI: 10.1016/j.segan.2021.100508.

[7] SIMORGH, H., H. DOAGOU-MOJARRAD,
H. RAZMI and G. B. GHAREHPETIAN. Cost-
based optimal siting and sizing of electric vehi-
cle charging stations considering demand response
programmes. IET Generation, Transmission &
Distribution. 2018, vol. 12, iss. 8, pp. 1712–1720.
ISSN 1751-8695. DOI: 10.1049/iet-gtd.2017.1663.

[8] BILAL, M., M. RIZWAN, I. ALSAIDAN
and F. M. ALMASOUDI. AI-Based Approach
for Optimal Placement of EVCS and DG With
Reliability Analysis. IEEE Access. 2021, vol. 9,
iss. 1, pp. 154204–154224. ISSN 2169-3536.
DOI: 10.1109/ACCESS.2021.3125135.

[9] VELAMURI, S., S. H. C. CHERUKURI,
S. K. SUDABATTULA, N. PRABAHARAN
and E. HOSSAIN. Combined Approach for
Power Loss Minimization in Distribution Net-
works in the Presence of Gridable Electric Vehicles
and Dispersed Generation. IEEE Systems Jour-
nal. 2022, vol. 16, iss. 2, pp. 3284–3295. ISSN 1937-
9234. DOI: 10.1109/JSYST.2021.3123436.

[10] GAMPA, S. R., K. JASTHI, P. GOLI, D. DAS
and R. C. BANSAL. Grasshopper optimization al-
gorithm based two stage fuzzy multiobjective ap-
proach for optimum sizing and placement of dis-
tributed generations, shunt capacitors and electric
vehicle charging stations. Journal of Energy Stor-
age. 2020, vol. 27, iss. 1, pp. 1–13. ISSN 2352-
152X. DOI: 10.1016/j.est.2019.101117.

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 502

http://dx.doi.org/10.1049/iet-stg.2019.0059
https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/EPRI-NRDC_PHEV_GHG_report.pdf
https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/EPRI-NRDC_PHEV_GHG_report.pdf
https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/EPRI-NRDC_PHEV_GHG_report.pdf
http://dx.doi.org/10.1016/j.jestch.2018.08.005
http://dx.doi.org/10.1109/MIAS.2012.2215652
http://dx.doi.org/10.1049/iet-smt.2016.0277
http://dx.doi.org/10.1049/iet-smt.2016.0277
http://dx.doi.org/10.1016/j.segan.2021.100508
http://dx.doi.org/10.1049/iet-gtd.2017.1663
http://dx.doi.org/10.1109/ACCESS.2021.3125135
http://dx.doi.org/10.1109/JSYST.2021.3123436
http://dx.doi.org/10.1016/j.est.2019.101117


POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 20 | NUMBER: 4 | 2022 | DECEMBER

[11] HASHEMIAN, S. N., M. A. LATIFY
and G. R. YOUSEFI. PEV Fast-Charging
Station Sizing and Placement in Coupled
Transportation-Distribution Networks Con-
sidering Power Line Conditioning Capability.
IEEE Transactions on Smart Grid. 2020,
vol. 11, iss. 6, pp. 4773–4783. ISSN 1949-3061.
DOI: 10.1109/TSG.2020.3000113.

[12] SADHUKHAN, A., M. S. AHMAD and S. SIVA-
SUBRAMANI. Optimal Allocation of EV Charg-
ing Stations in a Radial Distribution Network Us-
ing Probabilistic Load Modeling. IEEE Transac-
tions on Intelligent Transportation Systems. 2022,
vol. 23, iss. 8, pp. 11376–11385. ISSN 1558-0016.
DOI: 10.1109/TITS.2021.3103419.

[13] SHUKLA, A., K. VERMA and R. KUMAR.
Multi-objective synergistic planning of EV fast-
charging stations in the distribution system
coupled with the transportation network. IET
Generation, Transmission & Distribution. 2019,
vol. 13, iss. 15, pp. 3421–3432. ISSN 1751-8695.
DOI: 10.1049/iet-gtd.2019.0486.

[14] PAL, A., A. BHATTACHARYA
and A. K. CHAKRABORTY. Allocation of elec-
tric vehicle charging station considering uncer-
tainties. Sustainable Energy, Grids and Networks.
2021, vol. 25, iss. 1, pp. 1–13. ISSN 2352-4677.
DOI: 10.1016/j.segan.2020.100422.

[15] DEB, S., K. TAMMI, X.-Z. GAO, K. KALITA
and P. MAHANTA. A Hybrid Multi-Objective
Chicken Swarm Optimization and Teaching
Learning Based Algorithm for Charging Sta-
tion Placement Problem. IEEE Access. 2020,
vol. 8, iss. 1, pp. 92573–92590. ISSN 2169-3536.
DOI: 10.1109/ACCESS.2020.2994298.

[16] SOMA, G. G., F. PILO and S. CONTI. Multi-
Objective Integrated Planning of Fast Charg-
ing Stations. In: 2019 AEIT International Con-
ference of Electrical and Electronic Technologies
for Automotive (AEIT AUTOMOTIVE). Torino:
IEEE, 2019, pp. 1–5. ISBN 978-88-87237-43-6.
DOI: 10.23919/EETA.2019.8804521.

[17] SALKUTI, S. R. Optimal Allocation of DG and D-
STATCOM in a Distribution System using Evolu-
tionary based Bat Algorithm. International Jour-
nal of Advanced Computer Science and Applica-
tions. 2021, vol. 12, iss. 4, pp. 360–365. ISSN 2158-
107X. DOI: 10.14569/IJACSA.2021.0120445.

[18] REMHA, S., S. CHETTIH and S. ARIF.
A Novel Multi-Objective Bat Algorithm for Op-
timal Placement and Sizing of Distributed Gen-
eration in Radial Distributed Systems. Advances
in Electrical and Electronic Engineering. 2018,

vol. 15, iss. 5, pp. 736–746. ISSN 1804-3119.
DOI: 10.15598/aeee.v15i5.2417.

[19] RAO, R. V. Rao algorithms: Three metaphor-
less simple algorithms for solving optimiza-
tion problems. International Journal of In-
dustrial Engineering Computations. 2020,
vol. 11, iss. 1, pp. 107–130. ISSN 1923-2926.
DOI: 10.5267/j.ijiec.2019.6.002.

[20] RAO, R. V. Jaya: A simple and new optimiza-
tion algorithm for solving constrained and un-
constrained optimization problems. International
Journal of Industrial Engineering Computations.
2016, vol. 7, iss. 1, pp. 19–34. ISSN 1923-2926.
DOI: 10.5267/j.ijiec.2015.8.004.

[21] DEB, S., K. TAMMI, K. KALITA and P. MA-
HANTA. Impact of Electric Vehicle Charging
Station Load on Distribution Network. Energies.
2018, vol. 11, iss. 1, pp. 1–25. ISSN 1996-1073.
DOI: 10.3390/en11010178.

[22] ZHANG, H., S. J. MOURA, Z. HU and Y. SONG.
PEV Fast-Charging Station Siting and Sizing
on Coupled Transportation and Power Net-
works. IEEE Transactions on Smart Grid. 2018,
vol. 9, iss. 4, pp. 2595–2605. ISSN 1949-3053.
DOI: 10.1109/TSG.2016.2614939.

About Authors

Vijay VUTLA (corresponding author) received
M.Tech. from Jawaharlal Nehru Technological Uni-
versity Kondagattu, Jagityal, Karimnagar in 2018.
Currently he is a research scholar in the Department
of Electrical Engineering at National Institute of
Technology (NIT) Warangal. His present research is
in the area of optimal planning of DGs and Electric
vehicle charging station.

Venkaiah CHINTHAM received the Ph.D.
degree in Electrical Engineering from the National
Institute of Technology (NIT) Warangal in 2014. Cur-
rently, He is professor in the Department of Electrical
Engineering at NIT Warangal. His present research is
in the area of AI applications to Power and Energy
Engineering, Economics & Financing Renewable
Energy Technologies.

Vinod Kumar Dulla MALLESHAM
obtained his B.E. (Electrical) and M.Tech.
(Power Systems) degrees from Osmania University,
Hyderabad, during 1979 and 1981 respectively.
He obtained his Ph.D. Degree from Indian
Institute of Technology (IIT) Kanpur in the year
1996. During 2002–2003 he was postdoctoral fellow

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 503

http://dx.doi.org/10.1109/TSG.2020.3000113
http://dx.doi.org/10.1109/TITS.2021.3103419
http://dx.doi.org/10.1049/iet-gtd.2019.0486
http://dx.doi.org/10.1016/j.segan.2020.100422
http://dx.doi.org/10.1109/ACCESS.2020.2994298
http://dx.doi.org/10.23919/EETA.2019.8804521
http://dx.doi.org/10.14569/IJACSA.2021.0120445
http://dx.doi.org/10.15598/aeee.v15i5.2417
http://dx.doi.org/10.5267/j.ijiec.2019.6.002
http://dx.doi.org/10.5267/j.ijiec.2015.8.004
http://dx.doi.org/10.3390/en11010178
http://dx.doi.org/10.1109/TSG.2016.2614939


POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 20 | NUMBER: 4 | 2022 | DECEMBER

at Howard University, Washington DC, USA. His areas
of interest are Power Systems Operation and Con-
trol, Power System Stability and Security, Artificial

Intelligence (AI) techniques for Power System and
Renewable Energy Systems. At present he is professor
(HAG) of Electrical Engineering at NIT, Warangal.

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 504


	Introduction
	Problem Formulation
	DGs Modeling
	Multi Objective Function (MOF)
	Active Power Loss Reduction Index (APLRI)
	EV User Cost Index (EVUCI)
	Maximum Voltage Deviation Reduction Index (MVDRI)

	System Constraints

	Algorithm
	Raos 3 Algorithm
	Jaya Algorithm

	Simulation Results and Analysis
	Base Case
	Case 1: Optimal Planning of RCS
	Case 2: Optimal Planning of DGs
	Case 3: Concurrent Optimal Planning of RCS and DGs

	Conclusion

