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Summary Paper deals with computing of magnetic field in the rails surroundings of subway (underground). The 
calculation of field is made by using of an analytical method in Excel VBA. There is also used commercial FEM 
software ANSYS and finite element method. Output results of the both methods are finally compared. 
 
1. INTRODUCTION 

 
In the calculation of the electromagnetic field 

one may meet with the so-called incommensurable 
problems when the relevant part of the defined area 
is much less than the remaining defined area. 

This occurs in the case when is necessary to 
determine the magnetic field created by systems of 
current carrying wires. 

The field should be determined very close to the 
wires, but at the same time it is necessary to 
appreciate where the field can not be omitted; where 
its value is given and inconsiderable. 

This task can be solved analytically in some 
special cases, when the surrounding medium is 
homogenous, non-ferromagnetic and non-
conducting. The appropriate integral formulas are 
used. On the other side, in more common cases, 
when the surrounding medium is non-homogenous, 
it is necessary to formulate the corresponding 
differential equations and solve them by means of a 
suitable numerical algorithm. 

The present contribution compares the 
mentioned numerical method with a simple integral 
model; at the same time the typical 
incommensurable problem is taken into account - 
distribution of the magnetic field in the surroundings 
of the electric current system for electric traction. 

 In the following sections we define the problem 
to solve, the mathematical models to be used, and 
the results obtained which are discussed and 
compared.  

 
2. FORMULATION OF THE PROBLEM 

 
The problem to solve is the calculation of the 

magnetic field near the line of subway 
(underground) in Prague. Schematic representation 
is depicted in Fig. 1. Types of conductors for the 
wires and assumed current distribution are presented 
in Tables 1, 2 and 3. 

It is assumed that no vehicles are present for the 
calculations. 

Current flowing in each conductor is determined 
from Table 1, 2 and 3. The current of the supply rail 
is 2000 A and the rail's reverse current is 800 A. 

The geometry of the problem is two 
dimensional, in the x,y co-ordinate system 

(differential model), or one dimensional in 
cylindrical r,z co-ordinate system (integral model).  

 

 

Fig. 1 Scheme of line in station 
K1-Supply rail; K2-Curry rail 

 
Tab. 1.  Types of conductors 

 
 Tab. 2.  Distribution of the current between rail and earth 

 
Tab. 3.  Parameters of the rail 

 
 

3. MATHEMATICAL MODELS 
 
3.1 Differential model 

The differential equation of problem under 
investigation has the general form 

Conductor Current 
carrying 

cross 
section 
(mm2) 

Height 
upper 

crown of 
the rail 
(mm) 

Distributi
on of 

traction 
current 
between 
rails (%) 

Distance 
from the 
centre of 

area 
(mm) 

Supply 
rail 

6297 170 100 1300 

Curry rail 6297 0,0 40 717,5 
Curry rail 6297 0,0 40 717,5 

Current of traction rail (A) 2000 
Rail 80 Assumed distribution of the 

current between rail and earth(%) Earth 20 

Type of the rail Cross – section 
(mm2) 

Wheel 
track 

S49 6297 1435 
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where:  Jsc is the current density of Isc currents, 
flowing along single conductors, as described in 
Section 1. Their value can be expressed as: 

Due to the fact that the current density vector Jsc 
has only a non null component in the zo direction, 
we have: 

 
              Jsc = xo·0 + yo ·0 +  zo Jsc,z , and 

consequently 
 
             Asc  = xo·0 + yo·0 +   zo Az(x,y).                                                                                                                                              
 
The next differential equations are valid for 

fields Jsc and Asc 
For cross-sections of single conductors 

For the surrounding non-conducting medium 

Equations (3) and (4); together with the 
respective boundary conditions can be solved both 
by means of the method of finite differences or the  
finite element method. 
 
3.2 Integral model 
3.2.1. Vector magnetic potential of direct current 
wires  

Let us choose a cylindrical co-ordinate system 
with axis z is coincident with the wire orientation of 
z axis is that of the current I and co-ordinate lines α 
are oriented clockwise towards z axis. The vector 
magnetic potential is calculated from its definition 

According to the well known relation for 
magnetic flux density created by a long straight wire 

Therefore 

 
where K is a constant, which is determined by 

means of scaling of the vector potential; i.e. 
localization of places where A = 0. If we take Az = 0 
for r = 1, then we have 

 
If r < 1 then ln r < 0 and Az > 0 ; 
If r > 1 then ln r > 0 and Az < 0, See [1]. After 

re-writting r in Cartesian co-ordinates we have 

 

 
(See Fig. 3). 
 

 

Fig. 3 Current filament in z axis and vector magnetic 
potential 

 
The expression (9) has to be re-written if the 

“wire” is more generally situated – parallel to z axis. 
See Fig. 4 where [x',y'] are co-ordinates of conductor 
with current and [x,y] are co-ordinates of place 
where vector magnetic potential is calculated. 

 

 

Fig. 4 Current filament parallel to z axis and vector 
magnetic potential 

3.2.2. Magnetic flux density 
The magnetic flux density B is calculated 

according to (11) and expressed in Cartesian 
coordinates in equations (12) and (13). The final 
formula (14) is the well known as Ampere's law. 
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4. CALCULATIONS 
 
4.1 Results of analytical solution 

The results of applying the integral equation 
model from (5) till (14) are summarized in the 
following pictures; see from Fig. 5 till Fig. 9. 

 

Fig. 5 Vector magnetic potential at the level of rails 

 

Fig. 6 Equipotential lines of the vector magnetic potential 
close to the rails – image detail 

 

Fig. 7 Equipotential lines of the vector magnetic potential 
in all the investigated area 

 

Fig. 8 The map of the magnetic flux density B 

 

Fig. 9 The magnetic flux density in horizontal levels 3,5 m, 
2,5 m and 1,5 m above foot of the rail 

 
5. FEM SIMULATION IN ANSYS 

 
We used ANSYS software and finite element 

method for solution the same problem and also for 
comparison of results with previous analysis made 
by EXCEL VBA.  

Basic model is represented by 2-D geometry 
and identical dimensions.  

 

 

Fig. 10 The map of the magnetic flux density B 
 
The Fig.10 shows distribution of magnetic flux 

density in model of the underground subway station. 
There is relative good agreement of values of the 
magnetic field.  
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Fig.11 represents flux lines around sources of 
magnetic field and the chart on Fig.12 shows 
magnetic flux density in horizontal levels above foot 
of the rail. 

 

 

Fig. 11 Flux lines in all the investigated area 
 

 

Fig. 12 The magnetic flux density in horizontal levels 3,5 
m, 2,5 m and 1,5 m above foot of the rail 

 
6. CONCLUSION  

Calculated value of the magnetic field in 
surroundings of subway station is in the range of 
mT.  

Used analyses show the good agreement of the 
both methods of solution. The correlations 
coefficients between single rows see Table 4.  
 

Tab. 4.  Comparison between analytical solution and 
ANSYS 

 
 

 

Fig.13 shows relative deviation of analytical solution 
and ANSYS. 

 

 

Fig. 13 Chart of relative deviation 
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