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Summary This paper deals with the problem of uncertainties evaluation when the procedure of inverse problems is used for 
processing the eddy current testing data. First the general inverse problem algorithm is described. Next the influence of 
different types of errors to the results of this algorithm is theoretically analyzed and some results are shown. These results 
show that the proper choice of the eddy current testing probe is important for achievement of accurate results of the inverse 
problem solution.  
 
1. INTRODUCTION 

 
Recently the techniques for nondestructive 

testing (NDT) of materials attract a lot of interest [1, 
2]. NDT is promising tool for improving the safety 
in such a branches of industry like atomic power 
plants, aerial and space industries. Using NDT the 
reliability of the crucial components can be tested. 

Among NDT techniques the eddy current 
testing (ECT) is very often used. This technique is 
based on the idea of inducing eddy current into 
conductive specimen and then measuring the 
response using coil sensors. Many research groups 
are involved in deploying this technique into 
industrial environment. As the ECT technique 
evolves, the requirements to the capabilities of it are 
rising. The most recent challenge is the ability of the 
reconstruction of the defect using measured signal 
[3,4].  It means, that not only the location of the 
defect is determined, but also other important 
characteristics like the profile of the defect and it's 
depth are extracted. During the process of the defect 
characterization many factors influence the resulting 
values. Several approaches were proposed to take 
into consideration these factors [5]. 

 
2. ECT TECHNIQUE AND INVERSE 

PROBLEMS 
 

Let us consider conductive plate of infinite size 
and some coil above the surface of it. Using the coil 
the electromagnetic field can be introduced into the 
plate. Because of it's conductivity the eddy current 
occur and can be detected. The detected signal is the 
same all around the plate provided the 
electromagnetic characteristics of the plate are 
homogeneous. But if this homogeneity is disturbed 
so is the signal. If the sensor is calibrated using 
referential specimen, the change of the measured 
signal signalizes the change of electromagnetic 
characteristics of the specimen under investigation 
which can be classified as defect of the material. 
When scanning around the specimen, the defects can 
be localized. 

To consider the importance of the discovered 
defect other characteristics than location have to be 

known - it's dimensions, value of conductivity in the 
defect area and so on. These characteristics can be 
determined using the inverse analysis approach. This 
approach is well known and used in many scientific 
areas. It is based on the basic assumptions: 

 
• the defect observability - it must be 

possible to measure the signal caused 
by defect 

• the existence of direct problem 
solver - there must exist the 
computational model which enables to 
calculate the signal for different 
electromagnetic and geometrical 
characteristics of the defect 

 
Provided these assumptions are fulfilled, the 
following algorithm can be used to determine the 
characteristics of the defect region using the 
measured signal: 
 

1. Make initial guess of the characteristics of 
the defect (geometrical and electromagnetic 
characteristics) and create computational 
model 

2. Calculate signal using computational model 
3. Compare calculated signal with one 

obtained by measurement 
4. If required accuracy is achieved, then the 

parameters of the model are the parameters 
of the real defect. Stop the iteration 

5. Adjust the parameters of the model and 
continue with step 2 

 
The important parts of this algorithm are the criteria 
of comparison the measured and calculated signals 
and the way of adjusting the parameters of the 
model. 
The former can be performed introducing the 
suitable norm, for example such as [3]: 
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where cZ  represents the values calculated using the 
computational model at the scanning points M,,1 Κ  
and mZ  is vector representing the values of the 
signal measured at the same scanning points. 
Values cZ  depend on two sets of parameters: gp  

represents the geometry of the defect and mp  
represents the properties of the model 
(computational algorithm, system parameters, 
properties of the used probes, etc.). 

For proper adjusting the parameters of the 
model, we can use following approach [5]. It is 
clear, that when the two vectors are identical then 

0=d . Unfortunately both values are affected by 
errors, so this problem has to be formulated as 
looking for cZ  such, that minimizes the value of d . 
Equation (1) then represents an optimisation 
problem. There are available many approaches, for 
example conjugate-gradient method. 
 
3. IMPACT OF ERRORS 

 
As was mentioned above, the values of both of 

the vectors in (1) are not precise, but affected by 
measurement and calculation errors. Afford was 
made to consider the influence of the errors to the 
reliability and robustness of the sizing procedure. 
One possibility was proposed in [5]. To take into 
consideration the noise of the measured signal, we 
can write: 

 
where moZ  are the precise values of the signal, and 

mZ∆  represent the measuring errors including both 
systematic and stochastic component. 
To consider the computational errors, we state: 

where mp∆  represents the errors of estimation of 
the model parameters and numerical accuracy of the 
algorithm and mop is the vector of precise values of 
the model. 

Then equation (1) can be written as: 

 
When considering  0=∆ mp and 0=∆ mZ , 

equation (4) becomes: 

 

which represents nominal distance. Because of the 
lack of errors, nominal solution gop satisfies the 

equation: 

 
In cases when  0≠∆ mp and/or 0≠∆ mZ , solution 

ggog ppp ∆+= minimizes equation (5). 

 
4. INVESTIGATION OF THE MODEL 

PARAMETERS ERRORS INFLUENCE TO 
THE DEFECT DIMENSIONS 
DETERMINATION 
 
The most important parameters which 

characterise the defect are its length and depth. 
When determining these parameters, it is important 
to understand how the model parameters influence 
this procedure. This understanding helps to explain, 
why the results of the inverse procedure are 
sometimes unreliable [6].  
 

 

Fig. 1. Experimental arrangement of specimen and defect 
 

To consider the influence of the model 
parameters to the possibility of determination of 
these parameters, following model was taken into 
consideration (fig. 1). The specimen is INCONEL 
plate with dimensions (w=100, l=140, h=20) mm. 
 

 

Fig. 2. Plus-point probe 
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The defect of dimensions (w=0.2, l=10, h=8) 
mm is located in the centre of the specimen. Signal 
is calculated for plus-point probe (fig.2) consisting 
of two square coils perpendicular to each other. 
Dimensions of the probe are (h=12.5, w=2.5, t=2.5) 
mm. Scanning path is along the defect length, probe 
is located symmetrically with respect to the defect.  

First the influence of the fluctuation of the 
length of the defect is considered. To perform this 
task, equation (4) has to be evaluated for different 
values of defect length, which yields  the 
dependence of the value d with respect to the model 
parameter l - the length of the defect. To neglect the 
influence of measurement errors, instead of 
measured signal the signal calculated using 
mathematical model was used when evaluating 
equation (5). Because the measurement errors were 
not considered ( 0=∆ mZ ), we would expect a curve 
with global minimum value equal to zero. The 
obtained figure is depicted in fig. 3.  

 
 

 
 
Fig. 3. Dependence of the difference between the 
referential signal and the signal evaluated usign 
numerical model for different values of the length of the 
defect 
 
In step 4 of the algorithm described in section 2 the 
value of the distance d between the measured signal 
and the signal calculated using model is compared 
with value ε  which is one of the parameters of the 
model. If the difference between signal obtained by 
model and referential signal (according equation (5)) 
is smaller than required accuracyε , then the 
parameters of the model are considered to be the 
sufficient approximation of the defect under 
investigation. It can be seen, that the uncertainty 
interval of the length determination depends on the 
value ε  of the criteria for stopping the algorithm for 
the inverse procedure. As is shown on fig. 3, for 
value 910.5,2 −=ε , the uncertainty interval is <8, 
12> mm. 

Similarly it is possible to investigate the 
influence of the variation of the defect depth. The 
results (fig. 4) show that the uncertainty interval is 
different for different values of the real value of the 

defect depth. Uncertainty interval for the defect with 
depth h=4mm is shown, but it can be seen that the 
uncertainty interval for the defect with depth h=8mm 
is significantly large. It is clear, that when increasing 
the defect depth, the uncertainty interval is also 
increasing and it is necessary to consider the 
suitability of the experimental setup to the task of 
determination the defect dimensions. 
 

 
 
Fig. 4. Dependence of the difference between the 
referential signal and the signal evaluated usign 
numerical model for different values of the depth of the 
defect 
 
5. CONCLUSION 

 
This article shows one approach to the 

investigation of the uncertainties of the inversion 
procedure. When the inverse procedure is based on 
the optimisation methods, the convergence criterion 
is important part of the numerical model. The proper 
choice of the convergence criteria can influence the 
width of the uncertainty interval of the defect 
dimensions. The methodology mentioned in this 
article can be used to compare the properties of the 
different probes used to determine the defect 
dimensions. This can help to develop the optimal 
probe for determination the defect with particular 
geometrical and electromagnetic characteristics. 

It can be also used to consider the influence of 
the different parameters of the numerical model to 
the uncertainty of the determination of the defect 
properties. 
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