SIMULATION OF MATERIAL INFLUENCES IN MR TOMOGRAPHY

K. Bartušeka), E. Kadlecováb), M. Steinbauerb)

a) Institute of Scientific Instruments, Academy of Sciences of the Czech Republic
Králův most 147, 612 00 Brno, Czech Republic
e-mail: bar@isibrno.cz

b) Brno University of Technology, Faculty of Electrical Engineering and Communication
Kolejní 2906/4, 612 00 Brno, Czech Republic
e-mail: kadlec@feec.vutbr.cz, steinbau@feec.vutbr.cz

Summary Materials with different magnetic susceptibility can cause deformation of magnetic field in MR tomograph, resulting in errors in obtained image. Using simulation and experimental verification we can solve the effect of changes in homogeneity of static magnetic fields caused by specimen made from magnetic material. This paper describes theoretical base of the magnetic resonance imaging method for susceptibility measurement. The method uses deformation of magnetic induction field in specimen vicinity. For MR purposes it is necessary to immerse specimen into reference medium with measurable MR signal.

1. INTRODUCTION

Proposed method of susceptibility measurement is based on presumption of constant magnetic flux in working space of superconducting magnet. Inserting of the specimen of thickness \(a\) and with magnetic susceptibility \(\chi_{ml}\) causes local deformation of previously homogeneous magnetic field (idealized case is in figure 1).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1}
\caption{Magnetic flux density field deformation due to paramagnetic specimen}
\end{figure}

Primal magnetic field values are \(H_0\) and \(B_0\) and both have direction \(\mathbf{u}_z\). In figure 2, magnetic intensity \(H_s(x)\) as well as magnetic flux density \(B_s(x)\) shapes are shown. Difference of this shapes from \(H_0\) (\(B_0\) respectively) values we call reaction field.

As we can see, the specimen affect not only field in his volume, but in his vicinity too. We assume that \(y\) size of the specimen is sufficient so we can neglect boundary effect and use 2D solution.

Magnetic flux density inside the specimen (neglecting little curvature of the shape in maximum) will be

\[B_s = B_0 (1 + \chi_{ml}). \tag{1} \]

Assume constant magnetic flux \(\Phi\) thru normal area of cross-section \(S\) of the magnet working space

\[\Phi = \int B \cdot dS = \text{konst.} \tag{2} \]

It is evident that magnetic flux density outside the specimen is lowered resulting in shape, which can be introduced as superposition of homogeneous field \(B_0\) and deformation field \(\Delta B\).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2}
\caption{Ideal shape of magnetic intensity and flux density in paramagnetic specimen and its vicinity}
\end{figure}

If we cannot measure value \(B_s\) directly, it is impossible to determine susceptibility taking advantage from (1). So it is necessary to use indirect measure method. For \(z-x\) cross-section figure 2 in the middle of the specimen we can write

\[\int_{-\varepsilon}^{\varepsilon} \Delta B(x) dx \equiv 0, \tag{3} \]

what means that sum of areas bounded by curve in this figure with respect to the base value of induction \(B_0\) is zero, where \(\varepsilon\) is sufficient distance from specimen with respect to its impact on induction change.
Knowing the course of $\Delta B(r)$ (we can obtain it using suitable MRI technique and reference substance giving MR signal in vicinity of material), we can also enumerate χ_{ml} value of the investigated specimen material

$$\chi_{ml} \equiv - \frac{\int_a^{\Gamma/2} \Delta B_0 \, dx + \int_{\Gamma/2}^\varepsilon \Delta B_0 \, dx}{a B_0}.$$ \hspace{1cm} (4)

2. ANALYTIC MODEL

Let’s have specimen with susceptibility χ_{ml} surrounded by medium with susceptibility χ_{m2} and placed into static primal magnetic field with magnetic intensity vector H_0 oriented in u_γ direction. We have to determine magnetic intensity H of incurred field, which is superposition of primal and reaction field H_r (effect of specimen magnetization).

![2D analytic model](image)

Fig. 3 2D analytic model

Because there are not variable currents in whole area, magnetic field is irrotational (rot $H = 0$) and we can use scalar magnetic potential [5]

$$H = -\text{grad} \varphi_m.$$ \hspace{1cm} (5)

Magnetic potential of primal field of intensity H_0 is using (5)

$$\varphi_m = -\int_H H_0 \cdot u_\gamma \, dz = -H_0 \, z.$$ \hspace{1cm} (6)

Incidence of magnetized specimen from figure 3 we can replace with effect of field of surface magnetic charge with density σ_m on boundary of areas Ω_1 a Ω_2 - see figure 4, whereas susceptibility of areas is now zero.

First we have to compute magnetic charge density distribution on bound Γ and consequently the intensity of reaction field $\Delta H = H - H_0$

$$\Delta H(r) = \frac{1}{2\pi} \int_{\Gamma} \mathbb{K}_m (r') \frac{u_\gamma}{R(r,r')} \, d\Gamma.$$ \hspace{1cm} (7)

![Replacement of magnetization effect by surface magnetic charge at the area boundaries](image)

Fig. 4 Replacement of magnetization effect by surface magnetic charge at the area boundaries

Surface magnetic charge invokes scalar magnetic potential

$$\varphi_m(r) = -\frac{1}{2\pi} \oint_{\Gamma} \mathbb{K}_m (r') \ln R(r,r') \, d\Gamma.$$ \hspace{1cm} (8)

Total scalar magnetic potential at point r is superposition of static primal field intensity (6) and contribution from charged bound (8)

$$\varphi_m(r) = -H \, z - \frac{1}{2\pi} \oint_{\Gamma} \mathbb{K}_m (r') \ln R(r,r') \, d\Gamma.$$ \hspace{1cm} (9)

Integral formula for surface magnetic charge density we obtain using condition of magnetic flux $B_s = B_i u_\gamma$ normal component conjunction on bound Γ (see figure 5)

$$B_s = \mu_0 (1 + \chi_{ml}) H_{in} = \mu_0 (1 + \chi_{m2}) H_{in}.$$ \hspace{1cm} (10)

![Normal components of boundary magnetic intensity and flux](image)

Fig. 5 Normal components of boundary magnetic intensity and flux

By analogy to the Gauss theorem causes magnetic charge of density σ_m at point A magnetic field of intensity

$$\Delta H_a = \pm \frac{\sigma_m (A)}{2}.$$ \hspace{1cm} (11)

Using (9) and (5) we can derive the normal components of magnetic field intensity in both areas at point A (see figure 5)
\[H_{in} = H_a u_n \cdot u_n + \frac{1}{2\pi} \text{grad} \sum_{r \in \partial \Omega} \sigma_m(r') \ln R(r,r') d\Gamma u_n, \quad (12) \]

\[H_{2s} = H_a u_s \cdot u_n + \frac{1}{2\pi} \text{grad} \sum_{r \in \partial \Omega} \sigma_m(r') \ln R(r,r') d\Gamma u_n. \quad (13) \]

Whenever \(A \in \Gamma \) and thus \(r \in \Gamma \), has integral in formulas (12) a (13) singularity at point \(A \) (where \(r = r' \)). We can remove this singularity omitting point \(r = r' \) from integration and taking field contribution of this point using (11) instead. So we can write

\[H_{in} = H_a u_n \cdot u_n + \frac{1}{2\pi} \sum_{r \in \partial \Omega} \sigma_m(r') \ln R(r,r') d\Gamma u_n - \frac{\sigma_m(A)}{2}, \quad (14) \]

\[H_{2s} = H_a u_s \cdot u_n + \frac{1}{2\pi} \sum_{r \in \partial \Omega} \sigma_m(r') \ln R(r,r') d\Gamma u_n + \frac{\sigma_m(A)}{2}, \quad (15) \]

where was used

\[\text{grad} \ln R(r,r') = \frac{1}{R(r,r')} u_n. \quad (16) \]

Substituting from (14) and (15) into (10) we have after some rearrangement

\[\frac{\kappa}{2\pi} \sum_{r \in \partial \Omega} \sigma_m(r') \ln R(r,r') d\Gamma u_n = -\frac{\sigma_m(A)}{2}, \quad (17) \]

where differential susceptibility was introduced

\[\chi_a = \frac{\chi_{m1} - \chi_{m2}}{\chi_{m1} + \chi_{m2} + 2}. \quad (18) \]

Formula (17) is not analytically solvable, thus we solve it numerically by means of boundary element method (BEM). Let’s divide boundary \(\Gamma \) to \(N \) segments of the same length \(\Delta \), and with constant surface charge density \(\sigma_m(i) \) on segment \(i \).

Discretizing (17) we have for this segment

\[\frac{\sigma_m(i)}{2} + \frac{\chi_a}{2\pi} \sum_{j=1}^{N} \frac{\sigma_m(j) \Delta_i}{R(r_i,r_j)} u_n \cdot u_n = 0, \quad (19) \]

\[= -\chi_a H_0 u_s \cdot u_n \quad (20) \]

Now we can write matrix formulae

\[K q = h \quad (21) \]

\[k_q = \dfrac{1}{2} \delta(i,j) + \int_{\Gamma} d\Gamma u_n \cdot u_n \quad (22) \]

\[\delta(i,j) \text{ is Kronecker’s operator} \]

\[\delta(i,j) = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases} \quad (23) \]

\[q = [\sigma_m(1) \cdot K \cdot \sigma_m(N)]^T \]

\[\text{and components of vector } h \text{ are} \]

\[h_i = -\chi_a H_0 u_n \cdot u_n \quad (24) \]

From various possibilities we decided to use method of collocation, showed in figure 7.

\[\text{Effect of element charged surface with surface charge density } \sigma_m \text{ is substituted by linear magnetic charge} \]

\[\tau_m = \sigma_m \Delta_i \quad (25) \]

Mentioned method was applied by help of Matlab. Whenever we obtained distribution of
magnetic charge surface density q, reaction field was solved using

$$\Delta H(r_j) = \frac{1}{2\pi} \sum_{j=1}^{N} \sigma_m(j) \frac{\mathbf{u}_j}{R(r, r_j)}$$ \hspace{1cm} (26)

3. CONCLUSION

The new method was designed for magnetic susceptibility measurement based on MR tomography techniques enables to determine the magnetic susceptibility of such materials, which give no MR signal. Principle of the method was analytically designed and modeled and experimentally verified in laboratory (not presented in this paper).

One of result obtained by numerical modeling using described method is presented below. In this simulation the aluminium specimen ($\Omega _1$) was considered with $\chi _{ml} = 22.10^{-6}$, length of specimen $z = 20$ mm, thickness $a = (3, 5$ and $7)$ mm. Specimen was immersed into the water with $\chi _{m2} = -9.10^{-6}$ - ($\Omega _2$). Curve of magnetic intensity is in figure 8, curve of flux density is in figure 9. These curves correspond to theoretical shapes from figure 2.

Fig. 8 Intensity of reaction magnetic field simulated by Matlab using collocation method

Fig. 9 Flux density of reaction magnetic field simulated by Matlab using collocation method

Acknowledgement

The authors would like to thank Prof. Libor Dédek from Faculty of Electrical Engineering and Communication, BUT Brno, for assistance in theory. This work was partly financially supported by Grant B208130603 of Academy of Sciences of Czech Republic.

REFERENCES