METHODS OF CALCULATION OF DIGITAL SIGNALS SPECTRA

Gustav CEPCIANSKY¹, Ladislav SCHWARTZ²

¹Department of Telecommunications and Multimedia, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia
gcepciansky@zoznam.sk, schwartz@fel.uniza.sk

Abstract. The signal is a physical bearer of information (electric or optical energy, electromagnetic or air waves) which changes in course of time. Only a random signal the height of which in certain time instants can be anticipated with a probability 0 < p < 1 conveys information. The extreme cases perform the white noise on one hand, the value of which can not be anticipated at all (p = 0), and a constant or a periodic deterministic signal on the other hand, the values of which are known in each time instant with probability p = 1. Such signals do not carry any information. Typical information bearers in telecommunication techniques are digital signals that can be classified as random ones, discrete in time and in amplitude. As they are performed by a train of pulses with random amplitudes, they contain a periodic deterministic component. Because they are random, they can only be described by statistical characteristics as the mean value, the dispersion, the power and by the more complex characteristic – the power spectral density (the power spectrum) that can be derived using tools of theory of random processes. A simpler case is a digital signal with pulses with random amplitudes without any correlation among pulses (m-PAM codes). Its power spectrum can easily be derived [1], [2], [7], [10]. It is more difficult to derive the power spectra of the random signals performed by pulses with random amplitudes and with correlation among particular pulses. This is the topic which deals this paper with. The simple convolution coding, the MLT 3 code and the AMI-NRZ code, frequently used telecommunication branch [6], [8], [9], all with the correlation coupling between pulses, are considered as an example of calculation of the power spectrum of a digital signal. Further information about codes and spectral analysis can be found in [3], [4], [5].

1. Introduction

A digital signal carrying information is created by the train of periodically repeating pulses of a certain shape the amplitude of which in a k-th repeating period \(T \) is a random variable \(A_k \) acquiring discrete values \(a_{kj} \) with probabilities \(p_j, j = 0, \pm 1, \pm 2, ..., \pm M/2 \) where \(M \) denotes the count of discrete states of the non-zero amplitudes of a digital signal. It can be described in the time domain as:

\[
X(t) = \sum_{k=-\infty}^{\infty} A_k \cdot f(t) \quad \ldots \ldots -\frac{T}{2} + kT_a \leq t \leq kT_a + \frac{T}{2}, \quad (1)
\]

where \(f(t) \) is the function with the amplitude which equals 1 and which shapes the pulses of a digital signal and \(\tau \) is the width of the pulse (Fig. 1).

![Fig. 1: An example of a digital signal.](image)

The complex power spectral density \(S(f) \) of a random signal occurring as a train of periodically repeating pulses of a certain shape is according to [7] given by:

\[
S(f) = \frac{|F(f)|^2}{T} \sum_{n=-\infty}^{\infty} R_n e^{-j2\pi fn} + m_n^2 \sum_{n=-\infty}^{\infty} |c_n|^2 \delta(v - f_n), \quad (2)
\]

In the equation (2),

\[
F(f) = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cdot e^{-j2\pi ft} dt, \quad (3)
\]
is the Fourier transform of the function \(f(t)\),

\[
e_{\nu} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cdot e^{-j2\pi \nu t} \, dt,
\]

(4)

is the complex coefficient of the Fourier series of the non-random component of the random signal with pulses which are shaped according to the function \(f(t)\),

\[
m_a = \bar{A} = \sum_{j=-M}^{M} a_j \cdot p_j,
\]

(5)

is the mean value of the random amplitude \(A\) of a pulse and \(\delta(t)\) is the Dirac pulse.

In general, the correlation between pulses in a \(k\)-th and a \((k+n)\)-th repeating period can be expressed as:

\[
R_n = \bar{A}_k \cdot \bar{A}_{k+n} = \sum_{k=0}^{N-1} \sum_{j=-M}^{M} \sum_{i=-M}^{M} a_{ki} \cdot a_{(k+n),j} \cdot p_{kij} \cdot
\]

(6)

for \(n = 0, 1, 2, ..., N - 1\) where \(p_{kij}\) is the probability of occurrence of a \(j\)-th amplitude in a \((k+n)\)-th pulse on condition that an \(i\)-th amplitude has occurred in a \(k\)-th pulse:

\[
p_{kij} = p_{ki} \cdot p_{(k+n),j}.
\]

(7)

The equation between periods \(T\) and \(T_0\) is:

\[
T = N \cdot T_0.
\]

(8)

\(N\) denotes the correlation range, i.e. the number of pulses that may have a correlation coupling among each other within a period \(T\).

If there is no correlation between pulses of a digital signal but the signal has also a non-random component, formula (2) gets simpler:

\[
S(f) = \frac{\sigma_a^2 |F(f)|^2}{T} + m_a^2 \sum_{y=0}^{\infty} |y|^2 \delta(y \cdot f_o),
\]

(9)

where \(\sigma_a^2\) is the dispersion of the random amplitude of a digital signal:

\[
\sigma_a^2 = \sum_{j=-M}^{M} a_j^2 \cdot p_j - m_a^2 = \bar{A}^2 - m_a^2.
\]

(10)

In the equations (5) and (10), \(p_j\) is the probability of occurrence of a pulse amplitude \(a_j\).

If there is only a zero discrete coefficient, \(c_0\) in the spectrum representing a constant component in the random signal, then

\[
S(f) = \frac{\sigma_a^2 |F(f)|^2}{T} + m_a^2 c_0^2.
\]

(11)

If a signal contains only a pure alternate component, then the equation (2) can be further simplified to:

\[
S(f) = \frac{\sigma_a^2 |F(f)|^2}{T}.
\]

(12)

Let’s consider the simple convolution coding, the MLT3 code and the AMI-NRZ code all with the correlation coupling between pulses as an example of the calculation of the power spectrum of a digital signal.

2. Convolution Code

The main purpose of convolution codes is to detect and correct errors in the transmission of digital signals. Each coding which enables this brings redundancy and non-random elements into the original random digital signal in that manner that the state of some symbols depends on the state previous symbols. Thanks this redundancy, there are more symbols possible for a given input information stream. The chose of the right symbol among more possible pulses that can be taken into consideration is determined on an algorithm based on the trellis diagram which is known for both the transmitter and the receiver. The trellis diagram in Fig. 3 catches all possible states which the encoder on Fig. 2 can have, and the signal on the output of the encoder that reflects these states and that is enlarged by redundancy bits.

![Fig. 2: Example of a convolution encoder.](image-url)
It can be found out by the analysis of transitions and states in Dig. 3, that the actual 2-bit is bound with the previous 2-bit and so they create together 4-bits from which 8 from all 16 possible combinations of 4-bits are only allowed according to Tab. 1. As it can be seen from this table, all combinations of 00, 01, 10, 11 can occur on the 2nd and 3rd place in the 4-bit. But if a 0 or a 1 occur on the 1st place, these 0 or 1 are also on the 4th place. That means that the series of 4-bits can be decomposed into 3 independent bit series according to Fig. 4:

- a) a random bit series that includes bit on the 2nd place in the 4-bit,
- b) a random bit series that includes bit on the 3rd place in the 4-bit,
- c) a random 2-bit series that includes bits on the 1st and 4th place in the 4-bit, which, creating the signal c), are correlated.

The amplitude of a digital signal is a random variable A_k which acquires 2 values: $a_{k0} = 0$ with the probability $p_{k0} = 1/2$ and $a_{k1} = U$ with the probability $p_{k1} = 1/2$. Then the mean value of the amplitude will be:

$$m_a = \bar{A}_k = \sum_{j=0}^{1} a_{kj} \cdot p_{kj} = 0 \cdot \frac{1}{2} + U \cdot \frac{1}{2} = \frac{U}{2}.$$ (13)

and the dispersion:

$$\sigma_a^2 = \sum_{j=0}^{1} a_{kj}^2 \cdot p_{kj} - m_a^2 = 0^2 \cdot \frac{1}{2} + U^2 \cdot \frac{1}{2} - \left(\frac{U}{2} \right)^2 = \frac{U^2}{4}. (14)$$

Let’s consider rectangular shape of the random pulse filling the whole period ($\tau = T_o$), Fig. 5. Then:

$$f(t) = 1 \ldots \frac{-\tau}{2} \leq t \leq \frac{\tau}{2}.$$ (15)

The Fourier transform (3) of that pulse is:
For $n = 1$, the upper boundary of the first sum $N - n - 1 = 4 - 1 - 1 = 2$ and

$$R_1 = A_kA_{k+1} = \sum_{k=0}^{2} \sum_{j=0}^{1} a_{kk} \cdot a_{(k+1)j} = 0, \quad (21)$$

as there is no correlation between adjacent pulses within period T.

Similarly, for $n = 2$, the upper boundary of the first sum $N - n - 1 = 4 - 2 - 1 = 1$ and,

$$R_2 = A_kA_{k+2} = \sum_{k=0}^{1} \sum_{j=0}^{1} a_{kk} \cdot a_{(k+1)j} = 0, \quad (22)$$

as there is no correlation of the 1st pulse with the 3rd one, and of the 2nd pulse with the 4th one in the period T.

Finally, for $n = 3$, the upper boundary of the first sum $N - n - 1 = 4 - 3 - 1 = 0$ and it is the same as bottom one, so that first sum can be left out:

$$R_3 = A_kA_{k+3} = \sum_{k=0}^{1} \sum_{j=0}^{1} a_{kk} \cdot a_{(k+1)j} \cdot p_{0ij} =$$

$$= a_{00} \cdot a_{30} \cdot p_{000} + a_{00} \cdot a_{31} \cdot p_{001} + a_{01} \cdot a_{30} \cdot p_{010} + a_{01} \cdot a_{31} \cdot p_{011} =$$

$$= 0 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 + U \cdot 0 = 0. \quad (23)$$

The joint probability p_{0ij}, $i,j = 0$, 1 denotes the probability of the simultaneous occurrence of amplitudes a_{0k} in the 1st pulse and a_{3j} in the 4th pulse of the period T. The random variables $A_k (k = 0, 3)$ only acquire 2 values $a_{0k} = 0$ with the probability $p_{00} = 1/2$ and $a_{0k} = U$ with the probability $p_{0k} = 1/2$ for $k = 0, 3$ within the period T. Then according to equation (7), it is:

$$p_{0ij} = p_{0i} \cdot p_{3j} = \frac{1}{2} \cdot 0 = \frac{1}{2}. \quad (24)$$

Now the power spectral density of the alternate component can already be expressed using equation (2):

$$S_3(f) = \left[\frac{U^2}{4} \right] T_0 \frac{\sin^2 \frac{nf}{f_0}}{\frac{nf}{f_0}} \sum_{n=0}^{3} R_n e^{j2\pi nf_0} =$$

$$= \frac{T_0}{4} \left(\frac{\sin^2 \frac{nf}{f_0}}{\frac{nf}{f_0}} \right) \left(U^2 e^{j2\pi f_0} + \frac{U^2}{2} e^{j2\pi f_0} + \frac{U^2}{2} e^{-j2\pi f_0} \right) =$$
The real spectrum will be:

\[S(f) = 2 \cdot S_a(f) + S_c(f) = \]

\[= \frac{U^2}{2} \cdot T_0 \cdot \frac{\sin \frac{\pi f}{f_o} (1 + \cos^2 \frac{3\pi f}{f_o})}{2} + \frac{U^2}{4} \cdot \delta(0). \] \quad (29)

3. **MLT 3 Code**

The encoding of a digital signal by the MLT 3 code is used in Ethernet on metallic shielded or unshielded twisted pairs at 100 Mbps bit rates. Any of 3 levels \(-U, 0, +U\) can be assigned to the logical states 0 or 1 according to the following rule: If the logical 1 occurs, then the transition from the actual level to the next level always becomes. If the logical 0 occurs, then no transition takes place. The encoding is closer explained in Fig. 6 and in Tab. 2.

![Fig. 6: MLT 3 Code.](image_url)

Tab. 2: States of the MLT 3 code.

<table>
<thead>
<tr>
<th>Previous level</th>
<th>Next transition</th>
<th>New level</th>
</tr>
</thead>
<tbody>
<tr>
<td>+U</td>
<td>0 \rightarrow 0</td>
<td>+U</td>
</tr>
<tr>
<td></td>
<td>0 \rightarrow 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 \rightarrow 0</td>
<td>+U</td>
</tr>
<tr>
<td></td>
<td>1 \rightarrow 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 \rightarrow 0</td>
<td>-U</td>
</tr>
<tr>
<td></td>
<td>0 \rightarrow 1</td>
<td>-U</td>
</tr>
<tr>
<td></td>
<td>1 \rightarrow 0</td>
<td>-U</td>
</tr>
<tr>
<td>-U</td>
<td>1 \rightarrow 1</td>
<td>0</td>
</tr>
</tbody>
</table>

The random amplitude \(A\) of the pulse acquires 3 discrete values in the MLT 3 code: \(a_1 = -U\) with
probability \(p_{1,1} = 1/4 \), \(a_0 = 0 \) with probability \(p_0 = 1/2 \) and \(a_1 = +U \) with probability \(p_1 = 1/4 \) where probability of the logical 0 is \(p_0 = 1/2 \) and probability of the logical 1 is \(p_1 = 1/2 \).

The mean value of the amplitude of the signal with the MLT 3 code is zero because:

\[
m_a = \sum_{j=1}^{N} a_j \cdot p_j = -U \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + U \cdot \frac{1}{4} = 0 ,
\]

and the dispersion of amplitudes at the zero mean value is:

\[
\sigma_a^2 = \sum_{j=1}^{N} a_j^2 \cdot p_j = (-U)^2 \cdot \frac{1}{4} + 0^2 \cdot \frac{1}{2} + U^2 \cdot \frac{1}{4} = \frac{U^2}{2} .
\]

It can be seen from Tab. 2 that there is also a correlation coupling between adjacent pulses. The correlation coefficient \(R_1 \) has the same value as in (31). The correlation coefficient \(R_i \) shall be calculated. As there is only the correlation between adjacent pulses, the correlation range \(N = 2 \), the upper boundary of the first sum in equation (6) \(N - n - 1 = 2 - 1 - 1 = 0 \), so that this sum can be omitted. Then like in (23), it is:

\[
R_1 = A_{0,1} \cdot A_{1,0} = \sum_{i=1}^{N} a_{i,0} \cdot a_{i+1,0} \cdot p_{i+1,0} = \\
a_{-1,0} \cdot a_{-1,1} \cdot p_{0,1,1} + a_{0,0,0} \cdot a_{1,1,1} \cdot p_{0,0,1} + \\
a_{0,0,0} \cdot a_{1,0,0} \cdot a_{0,0,1} \cdot p_{0,0,1} + \\
a_{0,1,0} \cdot a_{0,1,1} \cdot p_{0,1,1} + \frac{1}{4}
\]

Now the probabilities \(p_{0,0,0} \), \(p_{0,0,1} \), \(p_{0,1,0} \), \(p_{0,1,1} \) shall be calculated. The transitions from \(+U\) to \(-U\) and from \(-U\) to \(+U\) are not allowed according to Tab. 2. Then the probabilities \(p_{0,0,0} \), \(p_{0,0,1} \), \(p_{0,1,0} \), \(p_{0,1,1} \), \(p_{1,0,0} \), \(p_{1,0,1} \), \(p_{1,1,0} \), \(p_{1,1,1} \), \(p_{1,1,1} \) are zero:

\[
P_{0,1,1} = p_{0,1,1} = 0 .
\]

An actual level \(-U\), 0 or \(+U\) stays the same, if the bit change from 1 to 0 occurs or the bit 0 is not changed, the probabilities of which are:

\[
P_{0,1,1} = p_{0,1,1} = p_{1,0,1} \cdot p_{1,0} + p_{1,1,0} \cdot p_{1,0} = \\
= p_1 \cdot p_0 \cdot p_1 \cdot p_0 + p_{1,1,0} \cdot p_{1,0} = \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} .
\]

\[
P_{0,0,0} = p_{0,0,0} + p_{0,0,1} \cdot p_{0,0} = \\
= \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} .
\]

An actual level \(-U\), 0 or \(+U\) will be changed, if the bit change from 0 to 1 occurs or the bit 1 stays the same, the probabilities of which are:

\[
P_{0,1,0} = p_{0,1,0} = p_{1,1,0} \cdot p_{1,0} = \\
= p_1 \cdot p_0 \cdot p_1 \cdot p_0 = \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} ,
\]

\[
P_{1,0,0} = p_{1,0,0} \cdot p_{1,0} = \\
= \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} .
\]
4. AMI-NRZ Code

This code is used mainly on the S bus of the ISDN basic access and slightly modified as the HDB 3 code is used in time division multiplex transmissions. Like the MLT 3 code, it is the code with 3 states where the random amplitude A of the pulse also acquires 3 discrete values: $a_1 = -U$ with probability $p_{1,1} = 1/4$, $a_0 = 0$ with probability $p_0 = 1/2$ and $a_1 = +U$ with probability $p_{1,1} = 1/4$ where probability of the logical 0 is $p_0 = 1/2$ and probability of the logical 1 is $p_1 = 1/2$. But there is the correlation coupling between the amplitudes $+U$ and $-U$, namely, when an amplitude U with the positive value has occurred in the past, then the next amplitude U which will occur after that will have the negative value and conversely, when an amplitude U with the positive value has occurred in the past, then the next amplitude U which will occur after that will have the positive value (Fig. 7, Tab. 3).

![AMI-NRZ code.](image)

Fig. 7: AMI-NRZ code.

Similarly as at the MLT 3 code, the mean value m_0 is also zero at the AMI code and the dispersion of amplitudes σ^2_0 and the covariance K_0 are given by (31).

Tab. 3: States of the AMI code.

<table>
<thead>
<tr>
<th>Previous level</th>
<th>Next transition</th>
<th>New level</th>
</tr>
</thead>
<tbody>
<tr>
<td>+U</td>
<td>1</td>
<td>-U</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>+U or -U</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-U</td>
<td>1</td>
<td>+U</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Let’s calculate the probabilities $p_{0,j,i}$, $i, j = -1, 0, 1$. It is not possible for the states $+U$ or $-U$ to occur next to each other according to Tab. 3. Then the probabilities $p_{1,1}$ and $p_{0,1,1}$ are zeros:

$$p_{0,-1,1} = p_{0,1,1} = 0.$$ (41)

Further:

$$p_{0,-1,0} = p_{0,0,-1} = p_{0,1,0} = p_{0,1,0} = \frac{1}{4}, \quad \frac{1}{2} = \frac{1}{8}.$$ (42)

$$p_{0,0,0} = \frac{1}{2}, \quad \frac{1}{2} = \frac{1}{4}.$$ (43)

The transition from the level $-U$ to the level $+U$ or conversely from $+U$ to $-U$ becomes when the bit with the logical 1 occurs. Then

$$p_{0,-1,1} = p_{0,1,-1} = p_{1,-1} \cdot p_{1,1} = p_{1,1} \cdot p_{1,1} = \frac{1}{4}, \quad \frac{1}{2} = \frac{1}{8}.$$ (44)

So the correlation coefficient R_1 according to (32) will be:

$$R_1 = (-U) \cdot (-U) \cdot 0 + (+U) \cdot 0 \cdot \frac{1}{8} + (-U) \cdot U \cdot \frac{1}{8} +$$

$$+ 0 \cdot (-U) \cdot \frac{1}{8} + 0 \cdot 0 \cdot \frac{1}{4} + 0 \cdot U \cdot \frac{1}{8} +$$

$$+ U \cdot (-U) \cdot \frac{1}{8} + U \cdot 0 \cdot \frac{1}{4} + U \cdot U \cdot 0 = -\frac{U^2}{4}. \quad (45)

As the signal does not contain any either non-random or constant component, putting (45) into (2) we obtain for the entire spectrum of the code:

$$S(f) = \frac{1}{T_0} \int_0^{T_0} \sin \left(\frac{2\pi f}{f_0} t \right)^2 e^{i2\pi f_0 t} =$$

$$= T_0 \left(\frac{\sin \frac{(2\pi f)}{f_0}}{f_0} \right)^2 \left(\frac{1 - \cos \frac{2\pi f}{f_0}}{2} \right)^2 =$$

$$= T_0 \left(\frac{\sin \frac{(2\pi f)}{f_0}}{f_0} \right)^2 \left(\frac{U^2}{2} \right)^2 =$$

$$= T_0 \left(\frac{\sin \frac{(2\pi f)}{f_0}}{f_0} \right)^2 \left(\frac{U^2}{2} \right)^2 =$$

$$= T_0 \left(\frac{\sin \frac{(2\pi f)}{f_0}}{f_0} \right)^2 \left(\frac{U^2}{2} \right)^2.$$ (46)

The real spectrum will be:

$$S(f) = \frac{2}{T_0} \cdot S(f) = \frac{2}{T_0} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}.$$ (47)
5. Evaluation of Results

On Fig. 8, the spectra of the convolution encoded signal (29) (dotted line), the ML T 3 code (dashed line) and the AMI-NRZ code (dotted and dashed line) are compared with the basic random digital signal with the same pulse shape (full line) which can be according to (11) and (20) expressed as:

\[
S_r(f) = \frac{U^2}{2} T_0 \left(\sin \frac{f}{f_o} \right)^2 + \frac{U^2}{4} \delta(0). \tag{48}
\]

The whole power of a signal can be calculated by 2 ways – either in the time domain:

\[
P = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} X^2(t)dt = \frac{A^2}{T_0} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^2(t)dt, \tag{49}
\]

or in the frequency domain by the integration of the power spectral density \(S(f) \) and/or applying Parseval theorem.

\[
P = \int_{0}^{\infty} S(f)df + m_2 \left(c_0^2 + \frac{1}{2} \sum_{v=1}^{\infty} c_v^2 \right). \tag{50}
\]

Applying these equations the powers of all examined signals can be calculated:

\[
P = \frac{U^2}{2}. \tag{51}
\]

That means the entire power of the examined signals is not changed by coding.

One half of energy of the basic digital random signal and of the convolution encoded signal is concentrated in constant component \(c_0 \) which is:

\[
P_0 = \frac{U^2}{4}. \tag{49}
\]

as it can be deducted from equations (29), (48) and (50). The other half of energy is scattered over the alternated spectrum.

Random baseband digital signals are characterised by continuous power spectrum density curve. Due to the periodic deterministic component (rectangular pulses), the spectrum manifests a typical main lobe and diminishing side lobes. There are plotted only main lobes of the examined digital signals on Fig. 8. The main lobe on the convolution signal is deformed by coding. The power spectral densities curves gain zero values at spectral frequencies that equal to repeating frequency \(f_o \) and its multiplies.

It can be interesting from the transmission point of view how much energy is in the main lobe which performs the bandwidth of the particular signal. It can be shown by the numerical computation of the integral in (50) in the range from 0 to \(f_o \) that 95 % of the whole power is scattered in the main spectrum lobe in case of the basic random digital signal, the convolution encoded signal and the ML T 3 code, and 86 % in case of the AMI-NRZ code. As to transmitted energy in trunked spectrum concerns, the AMI codes are less suitable for transmission than the other codes examined here.

6. Conclusion

Knowledge of spectra of digital signals carrying information is important both in radio communications at the frequency spectrum management, and in telecommunications to determine spectral compatibility of various transmission systems conveying information through physical circuits in metallic networks so that they are influenced each other by crosstalks as less as possible.

The spectrum calculation of a random digital signal applying (10) or (11) is quite simple. The goal of this contribution was to show the spectrum calculation in more complicated cases, when there is a correlation coupling among pulses of a signal.

Acknowledgements

The authors gratefully acknowledge support from the VEGA project No. 1/0655/10 "Algorithms for capturing, transmission and reconstruction of 3-D image for 3-D IP television".
References

About Authors

Ladislav SCHWARTZ was born on 1950 in Zilina. In 1974 graduated on the University of Zilina, Department of Telecommunications with the Master’s degree (M.Sc.). From 1974 to 1991, he worked in the Research Institute of Computer Techniques in Zilina as the head of the Department of Data Communications. In 1986, he was awarded the title Ph.D. and in 1991, he became a full time teacher and research worker of the University of Zilina. In 1999, he was appointed an associate professor. His main activities are focused on operation, reliability, security telecommunication and computer networks and data communication.