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Abstract. The analysis of Optical Single Sideband
(OSSB) generation with and without second-order
sidebands for Radio over Fiber (RoF) is presented.
The performance of systems based on hybrid coupler
with distinct phase angle and Dual-Parallel Dual-Drive
Mach-Zehnder Modulator (DP-DDMZM) is compared
using simulation. Impact of parameters like Single-
Mode Fiber (SMF) length, Radiofrequency (RF) am-
plitude, and laser linewidth on Signal-to-Noise Ratio
(SNR) has been investigated. It has been observed that
eliminating one of the second-order sidebands with 120◦
hybrid coupler improves peak SNR in comparison to
90◦ hybrid coupler with both second-order sidebands
and DP-DDMZM-based system without second-order
sidebands irrespective of Continuous Wave (CW) laser
linewidth.
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1. Introduction

Radio over Fiber (RoF) is a technique, in which Ra-
diofrequency (RF) signals are transmitted over opti-
cal fiber. The RoF combines the advantage of abun-
dant bandwidth of optical fiber with wireless mobil-
ity and flexibility for various broadband applications
[1]. Two methods for intensity modulation are used.
Direct intensity modulation is less complex and cost-

effective but provides good performance up to several
GHz [2]. For high-performance RoF links, external in-
tensity modulation is preferred. The external modu-
lation techniques such as Double Sideband Suppressed
Carrier (DSBSC), Double Sideband Full Carrier (DS-
BFC), Single Sideband (SSB) and Vestigial Sideband
(VSB) are gaining interest in research community. Op-
tical Single Sideband (OSSB) has many advantages
compared to Double Sideband (DSB). The OSSB is
preferred for long-haul applications with lower num-
ber of repeaters and hence reduces system complexity
and cost [3] and [4]. Moreover, it leads to reduced
power fading and interference by cancelling harmonics
[5]. Various methods for implementation of OSSB RoF
systems are proposed in the literature. The OSSB sys-
tem using fiber Bragg grating based on Hilbert trans-
form has been proposed in [6]. This scheme has rela-
tively poor long-term stability due to wavelength drift-
ing. The OSSB RoF transmission system based on 90◦
phase shifter has been analyzed in [7]. The OSSB mod-
ulation based on Dual-Drive Mach-Zehnder Modulator
(DD-MZM) and 120◦ hybrid coupler has been proposed
in [8] and it was shown that suppression of one of the
second-order sidebands, either (+2nd) or (−2nd), im-
proves the OSSB performance compared to OSSB gen-
eration using 90◦ hybrid coupler. Two OSSB systems
based on distinct hybrid coupler have been compared in
[9]. In the [10] was proposed OSSB modulation without
second-order sidebands (±2nd) based on Dual-Parallel
Dual-Drive Mach-Zehnder Modulator (DP-DDMZM).
For long-haul transmission, high Signal-to-Noise Ratio
(SNR) is required. The SNR can be improved either
by increasing transmitted signal power or reducing the
noise. But as signal power increases, modulation in-
dex of MZM also increases. With increase in modula-
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(a) Using 90◦ hybrid coupler. (b) Using 120◦ hybrid coupler. (c) Using DP-DDMZM.

Fig. 1: Block diagrams of OSSB generation with and without second-order sidebands [LD: Laser Diode, PC: Power Coupler, PD:
Photodiode, RF: Radiofrequency, PS: Phase Shift, A: Attenuator, SMF: Single-Mode Fiber].

tion index, power of higher-order harmonics strength-
ens which causes power fading due to chromatic dis-
persion. To overcome chromatic dispersion and power
fading at the receiver, it is required to eliminate one of
the second-order sidebands, either upper or lower, but
not both second-order sidebands, which also increases
transmission distance [11] and [12]. Thus, it would be
significant to analyze the performance of OSSB systems
with and without second-order sidebands. However,
the comparison of OSSB generation based on the dis-
tinct phase angle of hybrid coupler and DP-DDMZM
has not been carried out in any of these studies.

This work aims to analyze RoF systems, employ-
ing OSSB generation using hybrid couplers and DP-
DDMZM. Further, the performance of the RoF system
depends on various parameters like input RF signal,
laser linewidth and optical fiber length. It would be
of critical importance to analyze the performance of
the systems against these parameters. In this work,
OSSB generation with and without second-order side-
bands for RoF is presented. Theoretical analysis has
been done and simulation verification has been con-
ducted to compare the performance of different OSSB
modulators with and without second-order sidebands.
The SNR variations due to various parameters like op-
tical fiber length, RF amplitude and laser linewidth in
different OSSB modulators have also been investigated.

Rest of the paper is organized as follows. Section 2.
presents the proposed system models for OSSB gen-

eration using 90◦ hybrid coupler, 120◦ hybrid coupler,
and DP-DDMZM followed by theoretical analysis. Sec-
tion 3. describes the results in which, the influence
of optical fiber length (km), RF amplitude and laser
linewidth on SNR has been analyzed and discussed,
and Sec. 4. concludes the paper.

2. System Models Theory

The implementation of OSSB RoF systems with and
without second-order sidebands, based on DD-MZM
and DP-DDMZM are shown in Fig. 1. An OSSB sig-
nal can be generated using DD-MZM with 90◦ or 120◦
hybrid couplers and by using DP-DDMZM. The out-
put signals from laser diode and RF oscillator can be
represented as:

xL(t) = Ao exp j(ωLt+ φL(t)), (1)

where Ao, ωL and φL(t) represent amplitude, angular
frequency, and phase noise of laser, respectively.

xR(t) = VRF cos(ωRF t+ φRF (t)). (2)

Similarly, VRF , ωRF and φRF represent amplitude,
angular frequency, and phase noise of RF oscillator,
respectively. The output at DD-MZM [9] can be rep-
resented as:

Vo = Aoα

2

 exp j
[
ωLt+ γπ + φL(t)+
µ cos(ωRF t+ φRF (t))

]
+

exp j
[

ωLt+ φL(t)+
µ cos(ωRF t+ φRF (t) + θ)

]
 , (3)

where α is insertion loss, γ is normalized bias voltage
and µ is modulation index. For generating OSSB signal
using 90◦ hybrid coupler, γ = 1

2 and θ = π

2 . Therfore,
the output voltage can be expressed as:

V90◦ = Aoα

2


exp j

[
ωLt+ 1

2π + φL(t)+
µ cos(ωRF t+ φRF (t))

]
+

exp j
[

ωLt+ φL(t)+
µ cos

(
ωRF t+ φRF (t) + π

2

)]
 .
(4)

According to Jacobi-Anger identity,

eiz cos θ =
∞∑
−∞

inJn(z)einθ where Jn(z) is nth or-

der Bessel function of the first kind. Using this
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identity, the Eq. (4) can be rewritten as:

V90◦ = Aoα

2

[ ∞∑
n=−∞

(j)nJn(µ) exp j
[
ωLt+ π

2 + φL(t)

+(nωRF t+ nφRF (t))
]

+
∞∑

n=−∞
(j)nJn(µ) exp j

[
ωLt+

+φL(t) +
(
nωRF t+ nφRF (t) + nπ

2

)]]
. (5)

Expanding Eq. (5) up-to second order terms, the out-
put signals can be represented as:

V90◦ = Aoα

[
1√
2
J0(µ) exp j

(
ωLt+ φL(t) + π

4

)
+

−J1(µ) exp j (ωLt+ φL(t) + ωRF t+ φRF (t)) + 1√
2
·

·J2(µ) exp j
(
ωLt+ φL(t) + 2ωRF t+ 2φRF (t)− π

4

)
+

+ 1√
2
J−2(µ) exp j

(
ωLt+ φL(t)+

−2ωRF t− 2φRF (t)− π

4

)]
. (6)

It is seen from Eq. (6), that output spectrum consists
of carrier, +1st -order sideband and both ±2nd -order
sidebands, while −1st -order sideband is suppressed.
Similarly, for generating OSSB signal using 120◦ hybrid
coupler, γ = 1

3 and θ = 2π
3 . Therfore, the output

voltage can be expressed as:

V120◦ =

= Aoα

2


exp j

[
ωLt+ 1

3π + φL(t)+
µ cos(ωRF t+ φRF (t))

]
+

exp j

 ωLt+ φL(t)+

µ cos
(
ωRF t+ φRF (t) + 2π

3

)

 .
(7)

Using Jacobi-Anger identity, Eq. (7) can be rewritten
as:

V120◦ = Aoα

2

[ ∞∑
n=−∞

(j)nJn(µ) exp j
[
ωLt+ π

3 + φL(t)

+(nωRF t+ nφRF (t))
]

+
∞∑

n=−∞
(j)nJn(µ) exp j

[
ωLt+

+φL(t) +
(
nωRF t+ nφRF (t) + n2π

3

)]]
. (8)

V120◦ = Aoα

[√
3

2 J0(µ) exp j
(
ωLt+ φL(t) + π

6

)
+

−
√

3
2 J1(µ) exp j (ωLt+ φL(t) + ωRF t+ φRF (t)) +

+j
√

3
2 J−2(µ) exp j (ωLt+ φL(t)+

−2ωRF t− 2φRF (t))] . (9)

It may be noted from Eq. (9) that output spectrum
consists of carrier, +1st -order sideband and −2nd
-order sidebands while, +2nd -order sideband and
−1st -order sidebands are suppressed. OSSB modu-
lator using DP-DDMZM without second order side-
bands is shown in Fig. 1(c). This OSSB generation is
based on two DDMZM operating in parallel mode [10].
So the net output field can be expressed as:

VDP-DDMZM = VDDMZMa + VDDMZMb. (10)

Here, VDDMZMa is operated as SSB modulator with
γ = 1

2 and θ = π

2 while VDDMZMb is biased at Max-
imum Transmission Bias Point (MATBP) with γ = 0
and θ = π.

VDDMZMa =

= Aoα

[
1√
2
J0(µ) exp j

(
ωLt+ φL(t) + π

4

)
+

−J1(µ) exp j (ωLt+ φL(t) + ωRF t+ φRF (t)) +

+ 1√
2
J2(µ) exp j

(
ωLt+ φL(t) + 2ωRF t+ 2φRF (t) +

−π4

) 1√
2
J−2(µ) exp j

(
ωLt+ φL(t) +

−2ωRF t− 2φRF (t)− π

4

)]
. (11)

VDDMZMb = Aoα [J0(βµ) exp j (ωLt+ φL(t)) +
+J2(βµ) exp j (ωLt+ φL(t) + 2ωRF t+ 2φRF (t)) +

+ J−2(βµ) exp j (ωLt+ φL(t)− 2ωRF t− 2φRF (t))] .
(12)

where β is the attenuation of attenuator. Considering
the 3π

4 phase shift introduced by phase shifter, the
output at VDDMZMb is given by:

VDDMZMb = Aoα

[
J0(βµ) exp j

(
ωLt+ φL(t)3π

4

)
+

+J2(βµ) exp j
(
ωLt+ φL(t) + 2ωRF t+ 2φRF (t) +

+3π
4

)
+ J−2(βµ) exp j

(
ωLt+ φL(t) +

−2ωRF t− 2φRF (t) + 3π
4

)]
. (13)
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Now, using Eq. (10), the net optical field for DP-
DDMZM can be obtained as:

VDP-DDMZM = A0α

[[√(
1√
2
J0(µ)

)2
+ J0(βµ)2

]
·

· exp j
(
ωLt+ φL(t) + 3π

4

)
− J1(µ) exp j (ωLt+

+φL(t) + ωRF t+ φRF (t))
]
. (14)

From Eq. (14), it may be observed that both ±2nd
-order sidebands have same magnitude so that they
will cancel out and we get carrier and 1st -order side-
band. Both second order sidebands are suppressed.
After transmission on SMF over distance L (km), the
signals can be mathematically represented as:

V90◦ = Aoα10
−αFL

20
[

1√
2
J0(µ) exp j

(
ωLt+

+φL(t− t′0) + π

4 − φ1

)
− J1(µ) exp j (ωLt+

+φL(t− t′1) + ωRF t+ φRF (t− t′1)− φ2) +

+ 1√
2
J2(µ) exp j

(
ωLt+ φL(t− t′2) + 2ωRF t+

+2φRF (t− t′2)− π

4 − φ3

)
+ 1√

2
J−2(µ) exp j

(
ωLt+

+φL(t− t′2)− 2ωRF t− 2φRF (t− t′2)− π

4 − φ3

)]
,

(15)

where αF denotes fiber loss, t′0, t′1, and t′2 denote group
delay for central angular laser frequency ωL, an upper
sideband of ωL + ωRF and ωL ±+ωRF . φ1, φ2, φ3 are
phase shifts due to dispersion. Similarly, for OSSB us-
ing 120◦ hybrid coupler and DP-DDMZM, the output
voltages can be expressed as:

V120◦ = Aoα10
−αFL

20
[√

3
2 J0(µ) exp j

(
ωLt+

φL(t− t′0) + π

6 − φ1

)
−
√

3
2 J1(µ) exp j (ωLt+

φL(t− t′1) + ωRF t+ φRF (t− t′1)− φ2) +

+j
√

3
2 J−2(µ) exp j (ωLt+ φL(t− t′2)+

−2ωRF t− 2φRF (t− t′2)− φ3)] , (16)

VDP-DDMZM =

A0α10
−αFL

20
[[√(

1√
2
J0(µ)

)2
+ J0(βµ)2

]
·

· exp j
(
ωLt+ φL(t− t′0) + 3π

4 − φ1

)
+

−J1(µ) exp j (ωLt+ φL(t− t′1) + ωRF t+

+φRF (t− t′1)− φ2)
]
. (17)

Using square law model, the photocurrent i(90◦) can be
calculated as i(90◦) = R | V(90◦) |2. Hence,

i(90◦) = RA2
1

[
B −

√
2a1 cos

(
ωRF t+ φRF (t− t′1)+

−φ2 − φL(t− t′0) + φL(t− t′1)− π

4 + φ1

)
+

+2a2 cos
(

2ωRF t− φL(t− t′0) + φ1 − φL(t− t′2)+

+2φRF (t− t′2)− φ3 −
π

2

)
− 2
√

2J1(µ)J2(µ)
J0(µ)2 ·

· cos
(
ωRF t−

(
φL(t− t′1)− φL(t− t′2)+

+φRF (t− t′1) + ωRF t− φ2 + φ3 + π

4

))]
, (18)

where R is the responsivity of photodiode,

B = 1
2 + α2

1 + α2
2, α1 = J1(µ)

J0(µ) , α2 = J2(µ)
J0(µ) ,

A1 = A0α10
−αFL

20 J0(µ).

i(120◦) = RA2
1

[
B′ − 3

2a1 cos
(
ωRF t+ φRF (t− t′1) +

−φ2 − φL(t− t′0) + φL(t− t′1)− π

6 + φ1

)
+

+3
2a2 cos

(
2ωRF t− φL(t− t′0) + φ1 − φL(t− t′2) +

+2φRF (t− t′2)− φ3 −
π

6

)
− 3J1(µ)J2(µ)

2J0(µ)2 ·

· cos
(
ωRF t−

(
φL(t− t′1)− φL(t− t′2) +

+φRF (t− t′1) + ωRF t− φ2 + φ3 + π

6

))]
, (19)

where B′ = 3
2 + 3

4α
2
1 + 3

4α
2
2.

i(DP-DDMZM) = RA2
1

[
k2 + α2

1+

−2kα1 cos
(
ωRF t+ φRF (t− t′1)− φ2 +

−φL(t− t′0) + φL(t− t′1)− 3π
4 + φ1

)]
, (20)
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where k =

√(
1√
2J0(µ)

)2
+ J0(βµ)2

J0(µ) . Autocorrelation

function Rl(τ) = 〈i(t)i(t+τ)〉 is related to power spec-
tral density by Sl(f) = F〈Rl(τ)〉 where F is Fourier
transform. The SNR is related to receive power which
is directly proportional to power spectral density as

Prc =
∫ FRF +BRF

FRF−BRF

Sl(f), where FRF is signal frequency

and BRF denotes filter bandwidth. Hence, it is seen
that SNR is a function of RF input signal, optical fiber
length, bandwidth, and phase noise of laser and RF
oscillator.

3. Results and Discussion

In this section, the performance of OSSB modulators
shown in Fig. 1 is compared and analyzed. For this
study, systems are simulated using OptiSystem 16.0.
OptiSystem is an optical communication simulation
package based on realistic modelling of fiber-optic sys-
tems. The simulation parameters, remaining constant
throughout this work, are shown in Tab. 1. The sim-
ulated optical spectra for OSSB modulators with and
without second-order sidebands are shown in Fig. 2.
The output spectrum for OSSB generation using 90◦
hybrid coupler is shown in Fig. 2(a). It can be seen
that spectrum consists of carrier, +1st -order sideband
and both±2nd -order sidebands while−1st -order side-
band is suppressed. Similarly, the output spectrum for
OSSB generation using 120◦ hybrid coupler is shown
in Fig. 2(b).
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(a) Using 90◦ hybrid coupler (with both ±2nd -order side-
bands).

(b) Using 120◦ hybrid coupler (with −2nd -order sidebands).

(c) Using DP-DDMZM (without ±2nd -order sidebands).

Fig. 2: Spectra of OSSB Modulators with and without second-
order sidebands.

Tab. 1: Simulation parameters.

Parameter Value
Sine Generator frequency 20 GHz

CW Laser frequency 193.1 THz
Power of laser 0 dBm

LiNb Mach-Zehnder Modulator
Extinction Ratio 30 dB

Bias Voltage, Vπ 4 V
Optical fiber length 0–120 km
Fiber attenuation 0.2 dB·km−1

Fiber Dispersion 16.75 (ps·nm−1)·km−1

CW laser width 0–700 MHz
APD Gain 3
Responsivity 1 A·W−1
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One can see that output spectrum consists of carrier,
+1st -order sideband and −2nd -order sidebands, while
+2nd -order sideband and −1st -order sidebands are
suppressed. The spectrum of OSSB modulator using
DP-DDMZM is shown in Fig. 2(b). Here, both the
±2nd -order sidebands have same magnitude so that
they cancel out and the spectrum consists of carrier
and first-order sideband.

The variation of received SNR with optical fiber
length (km) for OSSB generation using 90◦, 120◦ hy-
brid coupler and DP-DDMZM is shown in Fig. 3.
These plots are obtained at fixed RF amplitude of 0.22
and 10 MHz CW laser linewidth. Results show that
SNR decreases as SMF length increases. It may also
be noted that OSSB generation using 120◦ hybrid cou-
pler is giving better performance compared to OSSB
generation using 90◦ hybrid coupler and DP-DDMZM.
An improvement of 0.48 dB compared to 90◦ hybrid
coupler and 7.41 dB compared to DP-DDMZM is ob-
served in peak value of SNR.

 

Fig.3 SNR versus optical fiber length for OSSB generation 

 

                                                            Fig.4 SNR versus RF amplitude for OSSB generation 

 

Fig.5 SNR versus CW Laser width for OSSB generation 

 

 

Fig. 3: SNR versus optical fiber length for OSSB generation.  

Fig.3 SNR versus optical fiber length for OSSB generation 

 

                                                            Fig.4 SNR versus RF amplitude for OSSB generation 

 

Fig.5 SNR versus CW Laser width for OSSB generation 

 

 

Fig. 4: SNR versus RF amplitude for OSSB generation.

The variation of received SNR with RF amplitude
for OSSB generation using 90◦, 120◦ hybrid coupler

and DP-DDMZM is shown in Fig. 4. Results are cal-
culated for fixed 10 MHz CW laser linewidth and 20 km
SMF length. Results show that as RF amplitude in-
creases, SNR also increases. RF amplitude increases
such that phase noise of the RF oscillator does not af-
fect SNR much. It may be noted that the value of
SNR is improved in OSSB generation using 120◦ hy-
brid coupler by 0.55 dB and 8 dB compared to 90◦ and
DP-DDMZM, respectively.

The variation of received SNR with CW laser
linewidth for OSSB generation using 90◦, 120◦ hybrid
coupler and DP-DDMZM is shown in Fig. 5. The value
of CW laser linewidth is varied from 5 MHz to 700 MHz
[9]. The plots are obtained at fixed SMF length of
20 km and RF amplitude is 0.22.

 

Fig.3 SNR versus optical fiber length for OSSB generation 

 

                                                            Fig.4 SNR versus RF amplitude for OSSB generation 

 

Fig.5 SNR versus CW Laser width for OSSB generation 

 

 

Fig. 5: SNR versus CW Laser width for OSSB generation.

The SNR decreases as CW laser line width increases.
It has been observed that 120◦ hybrid coupler is giving
improved SNR of 0.45 dB compared to 90◦ and 8.2 dB
compared to DP-DDMZM at 5 MHz. Also, SNR of DP-
DDMZM reduced to zero at higher CW laser linewidth.

4. Conclusion

Optical Single Sideband (OSSB) generation based
on distinct phase angle of hybrid coupler and DP-
DDMZM are compared and analyzed. In this paper,
OSSB generation with and without second-order side-
bands for RoF is presented. The SNR variations due to
various parameters like optical fiber length, RF ampli-
tude and laser linewidth have been investigated. The
peak SNR decreases as CW laser linewidth increases
in all cases. The DP-DDMZM-based systems are not
suitable for higher linewidths. Further, the SNR re-
duces with increase in length of fiber, while increasing
RF amplitude leads to increase in SNR. Elimination of
one of the second-order sidebands for generating OSSB
with 120◦ hybrid coupler gives better performance in
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terms of SNR which makes them suitable for long-haul
communication.
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