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Abstract. This article describes a new multipurpose
Silicone-Carbide (SiC) Metal Oxide Semiconductor
Field Effect Transistor (MOSFET) driver, which was
designed and manufactured for a high frequency oper-
ating SiC transistor as a semiconductor switching de-
vice of power converters. The design of the introduced
driver enables to adjust the output voltage levels eas-
ily by choosing the integrated linear voltage stabiliz-
ers with suitable output parameters used for Printed
Circuit Board (PCB) mounting. The voltage insula-
tion of the proposed driver between the primary con-
trol side and the secondary output side is performed by
MGJ6D12H24MC muRata Ps DC-DC converter with
a declared dv/dt immunity 80 kV/1000 ms at 1.6 kV
and by IX3180 IXYS High Speed gate driver optocou-
plers with a declared 10 kV/1000 ms minimum com-
mon mode rejection at 1.5 kV. The voltage insulation
of these coupling elements is accompanied by safety
gaps on the PCB. These insulation features enable
the proposed driver to work on high frequencies as
a high-side transistor of H-bridges as same as in other
power converter topologies with a high frequency and
high voltage stress of the insulation border. The pro-
posed driver also provides the possibility of tripping
the signal, when the short circuit of the controlled
power transistor occurs.
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1. Introduction

Modern Silicone-Carbide (SiC) Metal Oxide Semicon-
ductor Field Effect Transistors (MOSFET) can be
used in power converter applications working with high
switching frequencies in a range from tens of kHz up
to MHz. High switching frequency with a combination
of low transistor switching charge brings a possibility
of fast switching with low power losses [1] and [2]. This
leads to low switching losses due to fast transistor open-
ing and closing and low consumed power for control
the transistor due to low gate charge [3] and [4].

The requirements for a precise gate-source voltage
control arise from accomplish the precise switching
stated above [5]. Fast rise and fall times of the gate-
source voltage are necessary for a fast switching and
related low switching loss achievement [6]. The related
fast switching enables the converter to work with high
control dynamics, which is often required within con-
trol algorithms [7]. The steady levels of the gate-source
voltage, mainly the positive level of the switched-on
state, are demanded to be close to the maximum
rating values of the used power transistor to elimi-
nate the conduction and leakage losses [8]. These re-
quirements originate especially in a necessity of pre-
cise tune up the driver output resistance in high volt-
age converter applications. It is caused by the wave
impedance of the cable line applied between the driver
and controlled transistor and the transistor input ca-
pacity [9], [10], and [11]. This adjustment is usually
necessary because of the gate-source voltage overshoot
originated at the end of the control signal rising edge
and the falling edge, respectively. Generally, it is de-
manded to develop a multipurpose driver adjustable
for the specific application.

The high voltage stress of insulation border between
the primary and secondary parts of the driver is orig-
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inated in some applications. That can be seen espe-
cially in H-bridges where the power transistor is drain
connected to the steady point of power voltage with
reference to the control system ground. This voltage
stress is more strenuous with a faster switching and
higher switched voltage due to capacity current flow-
ing via the insulation border and stressing the isolating
dielectric.

In general, relatively high switching frequencies and
related fast rise and fall times of switched semicon-
ductors are achievable with the modern MOSFETs.
However, it means precisely tune up the driver buffer
output resistivity according to the output cable in-
ductance, the MOSFET input capacity, and the re-
lated gate-source voltage overshoot. The overshoot is
higher with a higher rising and falling gate-source volt-
age slopes. High switching frequencies of the applica-
tions, where the transistor source terminal changes its
electric potential with changing the switch state means
high insulation border stress. In general, many drivers
are commercially available, and many driver designs
were already published, see [12], [13], [14], [15], [16],
[17], [18], [19], and [20].

The goal of the paper is to present a multipurpose
driver concept with a few novel potentials according
to the following specific application requirements:

• easy setup of the steady on and off state output
voltage levels,

• easy setup of the output resistance to tune it up
according to the output cable impedance,

• high dv/dt insulation border immunity up
to 1.7 kV·µs−1,

• signal trip extension,

• extension of transferring the information about
drain-source voltage presence,

• possibility to use the device not as a transistor
driver, but as an insulated voltage detector.

All the mentioned features should be feasible by
choosing the appropriate PCB assembly. This makes
the driver easy to release for a specific application.
Moreover, it represses the risk of malfunction of less
reliable parts, such as potentiometers. These parts are
not used in the proposed concept.

2. Proposed Driver Concept

2.1. General Description

The proposed driver PCB contains 3 ports at the pri-
mary side and a group of 3 terminals at the sec-

ondary side, each one for one MOSFET pin, see Fig. 1.
The first primary port J1 contains the power supply
terminals for 9.6–18 V DC with the negative pole con-
nected to the signal ground. This port also contains
an input signal for driving the controlled transistor and
it is ready to trace the controlled transistor short cir-
cuit detection trip signal too.
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Fig. 1: Proposed driver simplified block diagram.

The next 2 primary ports contain output signals
of the secondary drain-source voltage detections, port
J4 reacts on positive voltage, port J5 on negative.
Each of these ports has an independent power supply
on the primary side, which is galvanically insulated.
It can work with different voltage signal state levels
according to the connected system, the voltage adjust-
ment is possible within the choice of PCB mounting
combination.

It is also possible to negate the output signal
at the primary side of the positive drain-source volt-
age detection, which can be beneficial mainly if this
signal is used as a trip function. The positive drain-
source voltage detector output can be traced in the port
J1 with a common signal ground as same as in port
J4 with an independent ground system. In general,
the positive drain-source voltage detection can be used
as a trip function - in this case, the detector output
is suppressed when the output transistor is in an off
state. This is performed to avoid the false fault de-
tection caused by the presence of detected voltage on
the switched-off semiconductor. If the suppression is

204 © 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

not performed, the detector output just follows the de-
tected voltage.

2.2. Secondary Side Power Supply
System

The proposed concept contains a DC-DC
MGJ6D12H24MC muRata Ps auxiliary source
which provides the high du/dt immunity galvanic
insulation of the power supply system. The unit
of secondary side power supply stabilization generates
4 voltage levels, which are assumed to −15 V, −5 V,
+15 V and +20 V, as defaults.

The levels +/−15 V are traced onto power supplies
of fast operational amplifiers, which are used as com-
parators within the units of drain-source voltage de-
tections, if these functions are released. The secondary
side of the driving signal optocoupler power supply is
supplied asymmetrically, +15 V/−5 V, so the level
+15 V is also used there. There is currently no ex-
pectation of demand to change the +/−15 V values,
but it could be demanded, e.g. in the case of the used
operational amplifiers change. In this case, it can be
adjusted by changing the related reference resistors se-
ries near the linear voltage regulators or by changing
these regulators, which are used in the TO-252-3 and
SOT-89 package, respectively. If the drain-source volt-
age detections are not used, PCB mounting the −15 V
regulator is not necessary.

The default levels assumed as −5 V, +20 V are used
as voltages, which are switched at the gate output.
These should be set according to the applied power
transistor on- and off-state nominal voltage levels and
the overshoot of the gate-source voltage on the applied
transistor at the end of the transient switching pro-
cesses.

These voltage levels are generated by the linear volt-
age regulators with no reference resistors and with
the signal ground connected directly to the secondary
ground. This ground is also connected to the transistor
source potential.

The voltage regulators are used in the TO-252 pack-
age and belong to the well-known LM78xx and LM79xx
series, respectively. It is necessary to set these voltage
levels by choosing the appropriate voltage regulators.

The nominal off and on-state power MOSFET tran-
sistors gate-source voltages are usually asymmetrical
with a lower negative level. Because of that, the sec-
ondary ground connected to the output transistor
source is not connected to the middle of the DC-DC
insulation auxiliary source output, even though these
2× 24 V DC outputs are connected in series.

The secondary side ground is connected to the out-
put of another −5 V DC linear voltage regulator, which
moves the reference ground from the middle of 2×24 V
about 5 V down. This ensures that there are available
c. +29 V and −9 V as the inputs for the steady state
gate-source voltage regulators.
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Fig. 2: Proposed driver PCB design layout, Eagle export, blue
color - bottom vias, red color - top vias.

2.3. Driving System

The driving system contains the cascaded optocou-
pler IX3180, an integrated low-side MOSFET driver
IXDN609SI and resistive buffer for parallel package
1210 resistors. Fast rectifying bypass diode for coupling
the parallel resistors with other resistors for the nega-
tive output voltage is also installed.

The mentioned elements also contain an output
to suppress the trip output to do not signalize the fail,
when the power transistor is in the off-state. It is not
necessary to mount parts of all the output resistors
PCB pads. However, it is important to tune the total
value according to the applied MOSFET and the line
cable between the power transistor and the driver out-
put [9]. It is also important to find an optimal resis-
tors combination according to the power loss limitation
of these elements.
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2.4. Tripping System/D-S Voltage
Detection

The tripping system/positive D-S voltage detector is
based on the input R-cascade 10× 1206 package. This
cascade couples the DRAIN input terminal, see Fig. 1,
with a pair of diodes in anti-series, which ground
the R-cascade via SOURCE terminal, see Fig. 1.
The anti-series diodes limit the voltage between
the output of the R-cascade and the system ground.
This voltage is traced to comparator based on opera-
tional amplifier ADA4627. The comparison reference
must be set by the related pair of resistors. The pro-
posed PCB layout of the comparator output contains
pads for placing the resistor and the capacitor for
the low pass filtering at the comparator output.

The input R-cascade also originates the RC low pass
filter together with diodes PN-junctions parasitic ca-
pacities. Choice of an optimal combination of input
resistivity and the grounding diodes then can be used
for filtering the input signal.

The main feature of the proposed positive D-S volt-
age detector system is the possibility of tuning up
the sensitivity within a few levels. Firstly, the low pass
filter originated by the input R-cascade and the related
diodes can be used to suppress the noise received by
the operational amplifier. Secondly, the low-pass filter,
originated by the RC element of R1 and C1, can be
used to suppress some fast transient peaks at the op-
erational amplifier output, see Fig. 3.
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Fig. 3: Tripping system/positive D-S voltage detector system
simplified circuit diagram.

Setting up the reference resistors RREF1 and RREF2

affects the reference comparison level and the input
signal-to-noise ratio too.

3. Proposed Driver Prototype

The driver prototype was realized for driving SiC
C2M0045170D MOSFET manufactured by CREE, Inc.
The output resistivity was set to approximately 3.33 Ω
for positive G-S voltage and 2.22 Ω for negative voltage,

using 9 × 20 Ω resistors. The steady positive output
voltage was set to +20 V, the steady negative output
voltage was set to −5 V.

Fig. 4: Mounted proposed driver PCB.

4. Obtained Results

The proposed driver was applied for test onto Step-
down converter based on the stated C2M0045170D
MOSFET using up to 1000 V switched voltage and
with the interconnection of the power transistor
to the proposed driver via coaxial approximately 20 cm
long cable.

Fig. 5: Tested driver prototype application.

In Fig. 7 and Fig. 8, the responses obtained
within the first driver test are presented. The test
was performed without voltage at the power circuit.
The switching frequency up to 500 kHz was achieved,
ordinary voltage scope probes were used.

The obtained turn-on delay was approx. 150 ns and
turn - off delay was approx. 220 ns, see Fig. 8. The low
overshoots can be seen within the reached gate-source
voltage curve, see Fig. 7 and Fig. 8.
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Fig. 6: Testing power circuit diagram.

Fig. 7: Driver prototype response, no voltage at the power cir-
cuit, input driver signal voltage 1:1 (V) - violet curve,
reached G-S voltage directly on the power transistor 1:1
(V) - blue curve.

Fig. 8: Detailed driver prototype response, no voltage
at the power circuit, input driver signal voltage 1:1
(V) - violet curve, reached G-S voltage directly on
the power transistor 1:1 (V) - blue curve.

It is important not to exceed the switched MOS-
FET absolute maximum rating, which is passed, but
the final overshoots are different because of the reverse
transfer capacitance impact, see Fig. 12 and Fig. 13.

The responses measured via the probes mentioned
in App. A and App. B are shown in Fig. 9, Fig. 10,
Fig. 11, Fig. 12, and Fig. 13. The nominal output

capacitance of the used C2M0045170D MOSFET is
171 pF. The nominal voltage probe input capacity
is less than 5.5 pF (the drain connected voltage probe
input terminal is not connected to the floating voltage
potential, so there is no input capacity impact). As can
be seen, the connected voltage probe input capacity
is much lower than the MOSFET output capacity, so
the minimal impact onto the measured transient state
can be supposed.

Fig. 9: Obtained one-pulse switching process at UIN = 1000 V,
drain-source voltage 1:100 (V) - blue curve, drain cur-
rent 100 mV/A (V) - violet curve.

Fig. 10: Obtained switching-on process detail at UIN = 1000 V
- drain-source voltage 1:100 (V) - blue curve, drain
current 100 mV/A (V) - violet curve.

The proposed prototype was tested via one-pulse,
which occurred for 25 µs. The switching pulse process
can be seen in Fig. 9, where the drain-source voltage
falls down at the beginning of the switching-on pro-
cess, and the drain current flowing through the RL
load begins exponentially growing up at the same time.
This is in progress until the beginning of the switching-
off process, when the drain current falls down to zero
and the drain-source voltage grows to UIN value over
the switching-off overshoot.
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Fig. 11: Obtained switching off process detail at UIN = 1000 V
- drain-source voltage 1:100 (V) - blue curve, drain
current 100 mV/A (V) - violet curve.

Fig. 12: Obtained switching on process detail at UIN = 1000 V
- gate-source voltage measured directly on power tran-
sistor (V).

Fig. 13: Obtained switching off process detail at UIN =
1000 V, gate-source voltage measured directly on
power transistor (V).

The highly smoothed quasi-periodic multi-harmonics
drain current oscillations can be observed within

the scoped curves, see Fig. 10 and Fig. 11, which rep-
resent the details of the switching-on and switching-off
processes. These oscillations are caused by a parasitic
LC circuit generated by the inductance of the wires
between the power MOSFET source and the load and
by the P-N junction capacity of the load diode DL (see
Fig. 6).

However, the drain current oscillates shortly after
the switching-on process is over, but the power tran-
sistor perfectly switches-on with no oscillations within
the switching process. It can be seen in Fig. 10
from the curve of the drain-source voltage, which oscil-
lates slightly near the steady state voltage drop value.

The obtained rise time in Fig. 10 is approx. 40 ns,
which is close to the nominal value of 20 ns. The nomi-
nal turn-on delay is 65 ns. The used voltage probe rise
time is less than 14 ns, which demonstrates the possi-
bility of monitoring this curve correctly by the probe.

The drain current quasi-periodic oscillations can be
also observed at the switching off-process, see Fig. 11,
but the drain-source voltage curve rises continuously,
within 20 ns, which is close to the nominal fall time
of 18 ns.

Figure 12 and Fig. 13 show the gate-source voltage
measured within the same switching-on and switching-
off process, respectively, as it is reflected within Fig. 10
and Fig. 11. Some transpositions of the drain current
oscillations to the gate-source voltage, can be observed
there, see Fig. 12 and Fig. 13.

However, the overshoot of the rising slope does not
exceed 25 V, which is the applied MOSFET absolute
maximum rating, see Fig. 12.

The falling slope within the switching-off process
does not exceed −10 V, which is the used MOSFET
absolute maximum rating, see Fig. 13.

5. Conclusion

A new SiC MOSFET driver is presented in the paper.
It was discovered that the tuned up realized driver pro-
totype is able to rich the nominal values of rise and fall
times of the assigned controlled power transistor, even
though there was no effort to localize the driver as close
as possible to the controlled transistor. The approx.
20 cm long coaxial cable was used in this case. Despite
the related wire inductance, the used MOSFET gate-
source voltage absolute maximum ratings were not ex-
ceeded. The steady states gate-source voltages were
set to the transistor recommended values.

The obtained results are very beneficial
from the practical point of view, because it is
not usually possible to locate the driver absolutely
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near the driven power transistor according to the con-
verter construction aspects. The proposed solution
enables to work near the transistor limits and also with
the use of a cable between the driver and the power
transistor.

The suppressed current oscillations can be observed
at the ends of the switching processes. These are
originated by the response of the parasitic LC el-
ement of the testing circuit. Although these os-
cillations are transferred onto gate-source voltage,
the switching processes are continuous, which can be
seen from the curves of the drain-source voltage.
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Appendix A Used Drain
Current Probe

LEM PR50

• Bandwidth fBW = 50 MHz.

• Rise time tr < 7 ns.

• Delay time td < 25 ns.

Appendix B Used Drain-Source
Voltage Probe

Teledyne LeCroy AP031

• Bandwidth fBW = 25 MHz.

• Rise time tr < 14 ns.

• Input capacitance td < 5.5 pF each input terminal
to ground.
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