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Abstract. In a wireless system, dual-hop transmis-
sion requires Full-Duplex (FD) to transmit signals
from the base station too far users. It is more bene�cial
if we deploy non-orthogonal multiple access to serve
speci�c users, i.e. normal users (near and far users)
and device-to-device users. The fairness and outage
performance of these users can be studied. We partic-
ularly focus on mathematical analysis of outage per-
formance which is computed based on Signal to Noise
Ratio (SNR) of received signals at each kind of user.
We derive a closed-form formula of such outage prob-
ability along with throughput. To realize both the FD
NOMA, this paper performs system performance met-
rics and considers how self-interference make in�u-
ences system performance. The simulation results val-
idate the theoretical analysis and show that our scheme
can obtain a better outage probability and throughput
performance with high transmit SNR at the base sta-
tion and lower required target rates.
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1. Introduction

Considering as a prominent approach for the increas-
ing requirements for higher capacity in wireless sys-
tems, Non-Orthogonal Multiple Access (NOMA) has
recently emerged in the upcoming Fifth-Generation
(5G) wireless communications [1], [2], [3], [4], and [5].
To eliminate multi-user interference, the conventional

multiple access, namely Orthogonal Multiple Access
(OMA), employs orthogonal allocation of resources.
The OMA scheme has some kinds, including Time
Division Multiple Access (TDMA), Frequency Divi-
sion Multiple Access (FDMA), and Code Division
Multiple Access (CDMA). In principle, multiple users
in NOMA can share the same frequency and time re-
sources [6], [7], [8], [9], and [10]. NOMA systems allo-
cate different power levels to different users by chang-
ing the level of interference from other users [11].

The wireless systems get bene�ts from other ad-
vances of NOMA systems such as spectral ef�ciency,
low latency, and connectivity which are provided
to meet the main requirements of the upcoming
5G wireless communications [12]. However, higher
complexity at the receivers using Successive Interfer-
ence Cancellation (SIC) to eliminate the interference
from other users' signals and then detecting their own
signals is enabled. By assigning different power levels
to different users, NOMA networks exhibit user fair-
ness based on their channel conditions. In particular,
users achieve high power coef�cients due to their weak
channels, while users with stronger channels are as-
signed with lower power factors.

NOMA with the presence of technologies such
as Device-to-Device (D2D) communications provides
the heterogeneous nature of 5G cellular systems.
The operation of D2D pairs can reuse the spectrum
band of cellular users [13], [14], and [15]. The integra-
tion of D2D transmission mode into the cellular system
makes an interference to broadcast channels or multi-
ple access. In [16] and [17], the application of NOMA
in D2D communications has been investigated.
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|gU1
← R|2 = Γ

m|gU1←R|2 , ξ2α2

λ|gU1←R|2

m|gU1←R|2
+ ξ3α4

λ|gU1←R|2

m|gU1←R|2

U1. (1)

In [18], the authors explored the interplay mode as
a special D2D approach for the NOMA system. In such
a system, the power domain multiplexing is required
for both the D2D pair and cellular users to elimi-
nate the strong interference between them by the SIC
decoding. They presented the case that D2D pair
employing the selection between the interplay mode
and underlay mode, the SIC decoding constraint is
achieved at both D2D receiver and NOMA base sta-
tion. Reference [19] considered a D2D-enhanced Un-
manned Aerial Vehicles (UAV) network, in which D2D
is conducted to improve the �le dispatching ef�ciency.
Considering such D2D-enhanced UAV systems relying
on NOMA, the authors studied graph theory-based al-
gorithms regarding resource allocation. The authors
in [20] presented the power allocation sub-problem
with continuous variables and decoding order vari-
ables. In particular, they �rst studied a heuristic al-
gorithm to optimize the power allocation for NOMA-
based with given D2D power allocation. [21] presented
a collaborative protocol with joint power optimiza-
tion in the D2D-NOMA system. As such, to limit
signal leakage, while performing beamforming to sup-
press AN in the legitimate users' directions, a Full-
Duplex (FD) cellular receiver injects the Arti�cial
Noise (AN) signals to deteriorate the eavesdropper's
channel. Other merging D2D-NOMA systems can be
reported in [21], [22], [23], [24], [25], [26], [27], [28], [29],
and [30]. Motivated by work [31], this paper studies
performance of D2D groups, in which the near and far
users can operate along with D2D users under the con-
text of the NOMA protocol.

2. System Model

In Fig. 1 we consider a downlink NOMA using the dual-
hop transmission. In such system, the Base Station
(BS) intends to send signals to the near user and the far
user, i.e. two cellular users U1 (near user) and U2

(far user). Especially, U2 needs assistance from one
full-duplex relay acting user (R) for forwarding signal
from BS. In this scenario, a D2D user D1 is located
in serving coverage of such BS. Due to the blockage
and hindrance to signal propagation, we cannot process
the signal in direct link BS-to U2 while the remain-
ing links of the NOMA system are available. Bene-
�ting Full-Duplex (FD) mode, the relay re-transmits
the decoded symbol only to the far user. Contrar-
ily, in such NOMA, R is able to forward symbol U2

and its own symbol to D1 at the same time which is

achieved by the enabler of NOMA. In such NOMA sys-
tem, we examine wireless channels following Nakagami-
m fading model. In particular, the channel coef�cient
experiences Nakagami-m fading will be represented
as Gamma distribution with integer fading factor mz

and mean λz denoted by |z|2 ∼ Γ
(
mz,

λz
mz

)
.

It is noted that relay R exhibits imperfect Self-
Interference (SI) cancellation causing residual at relay

|f |2 ∼ Γ
(
m|f |2 , ξ1

λ(|f |2)

m(|f |2)

)
with (0 ≤ ξ1 ≤ 1). At each

hop, power levels are reset, i.e. α1, α2, α3, α4 are power
allocation coef�cients, where α1 + α3 = 1, α1 < α3

and α2 + α4 = 1, α2 < α4. ρB =
PB
σ2

2

and ρR =
PR
σ2

2
are considered as transmit Signal to Noise Ratio (SNR)
at the BS and R, with PB , PR the total transmit power
of BS and the total transmit power of relay, respec-
tively and σ2

2 is the variance of Additive White Gaus-
sian Noise (AWGN) at R. The channel coef�cient of in-
terference link from Eq. (1).

Fig. 1: System model.

Is the level of residual interference (0 ≤ ξ3 ≤ 1).

The PDF and CDF of |gz|2 is given by [33].

f|z|2 (x) =
xmz−1

Γ (mz)β
mz
z

e
−
x

βz , (2)

and

F|z|2 (x) = 1− e
−
x

βz
mz−1∑
n=0

xn

n!βnz
, (3)

where βz
∆
=

λz
mz

with mz and λz represent the in-

teger fading factor and the channel mean power
λz = E{|z|2}. Γ(.) is the gamma function x is a vari-
able. To further examine system performance met-
rics, we need to compute Signal-to-Interference-plus-
Noise Ratio (SINR). Following the principle of NOMA,
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the relay is able to decode signal x3 by considering x1

as noise and the corresponding SINR at R is formulated
by [31].

γx3

R←BS =
α3ρB |gR←BS |2

α1ρB |gR←BS |2 + ρR|f |2 + 1
. (4)

To decode signals x3 and x1 at U1, we need to de-
termine the received SINRs respectively as:

γx3

U1←BS =
α3ρB |gU1←BS |

2

α1ρB |gU1←BS |
2

+ ρR|gU1←R|
2

+ 1
, (5)

and

γx1

U1←BS =
α1ρB |gU1←BS |

2

ρR|gU1←R|
2

+ 1
. (6)

At the second hop transmission, the far/weak user
U2 receives the signal transmitted from BS and decodes
it's information x3 by treating x2 as noise. Therefore,
the corresponding SINR to detect signal x3 at U2 is
given by:

γx3

U2←R =
α4ρR|gU2←R|

2

α2ρR|gU2←R|
2

+ 1
. (7)

Besides two users' signals, D2D user D1 needs ro re-
ceive the transmitted signal from R in this second hop
transmission. First, D1 needs to decode x3 if treat-
ing x2 as noise. By employing SIC, it can be decoded
its own signal x2. Hence, we can obtain SINRs that
correspond correspond to detect x3 and x2 at D1 re-
spectively as:

γx3

D1←R =
α4ρR|gD1←R|

2

α2ρR|gD1←R|
2

+ 1
, (8)

and

γx2

D1←R = α2ρR|gD1←R|
2
. (9)

The achievable rates of U1 and D1 are respectively
written by:

CU1 = log2(1 + γUx1
1
← BS), (10)

and

CD1 = log2(1 + γDx2
1
← R). (11)

Moreover, the achievable rate of U2 can be obtained
by as:

CU2 = log2(1+min(γx3

R←BS , γ
x3

U1←BS , γ
x3

U2←R, γ
x3

D1←R)).
(12)

Finally, the overall achievable capacity can be calcu-
lated as:

Cpro.cap. = CU1
+ CD1

+ CU2
. (13)

3. Outage Probability Analysis

In this section, it is necessary to determine an im-
portant performance metric, i.e. outage probability.
Due to differences in terms of power allocation fac-
tor and decoding order, such system performance for
each user could be different. The de�nition of outage
probability represents probability to SINR less than
the speci�c thresholds which are decided by different
demands of users. We �rst analyze the outage perfor-
mance of the near user as follow.

3.1. Outage Probability of U1

Considering the performance metric for the considered
system, the Outage Probability (OP) at U1 can be ex-
plained as: Outage behavior will occur in U1 related
to two situations. First, if it can not decode the sig-
nal x3. Second, if it decodes x3 but it cannot decode
x1. From the above description, the outage probability
of U1 is formulated by:

PU1
= Pr

(
log2

(
1 + γx3

U1←BS
)
< R2,

log2

(
1 + γx1

U1←BS
)
< R1

)
= Pr

(
γx3

U1←BS < δ2, γ
x1

U1←BS < δ1
)

= 1− Pr
(
γx3

U1←BS ≥ δ2, γ
x1

U1←BS ≥ δ1
)
,

(14)

where the threshold SNRs are
δ1 = 2R1 − 1, δ2 = 2R2 − 1. Substituting the for-
mula Eq. (6) and Eq. (7) into formula Eq. (14) we
get:

PU1
= 1− Pr

 A1ρB |gU1←BS |
2 ≥ ρR|gU1←R|

2
+ 1,

α1

δ1
ρB |gU1←BS |

2 ≥ ρR|gU1←R|
2

+ 1


(15)

where A1 =
α3 − α1δ2

δ2
.

The existence of OP reported in (15) is related to sit-

uation δ2 >
α3

α1
, the OP becomes PU∞ = ∞ and for

δ2 <
α3

α1
, the OP can be rewritten by:

PU1
=

1−
∞∫

0

F|gU1←BS|2
[

1

ϕρU2B
(ρRx+ 1)

]
f|gU1←R|2 (x)dx.

(16)

From formulas Eq. (2) and Eq. (2) we can calcu-

late F|gU1←BS |2

[
1

ϕρB
(ρRx+ 1)

]
and f|gU1←R|2(x) as
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follows:

F|gU1←BS|2
[

1

ϕρB
(ρRx+ 1)

]
= 1− e

−
ρRx+ 1

ϕρBβgU1←BS ·

·
mgU1←BS

−1∑
n=0

(
1

ϕρB
(ρRx+ 1)

)n
n!βngU1←BS

,

(17)

f|gU1←R|2 (x) =
x
mgU1←R

−1

Γ
(
mgU1←R

) ·

·
e
−

x

(ξ2α2 + ξ3α4)βgU1←R[
(ξ2α2 + ξ3α4)βgU1←R

]mgU1←R
.

(18)

Substituting Eq. (17) and Eq. (18) into Eq. (16), we
get:

PU1
= 1−

mgU1←BS
−1∑

n=0

n1∑
k=0

(
n1

k

)
e
−

1

ϕρBβgU1←BS ·

· ρkR
n!βngU1←BS

ϕnρnBΓ
(
mgU1←R

) ·
· 1(
ξ2α2βgU1←R

+ ξ3α4βgU1←R

)mgU1←R
·

·
∞∫
0

e−µxx
k+mgU1←R

−1
dx,

(19)

where µ
∧
=

ρR
ϕρBβgU1←BS

+
1

ξ2α2βgU1←R
+ ξ3α4βgU1←R

and ϕ = min

(
A1,

α1

δ1

)
.

By using result in [32] and applying some polynomial
expansion manipulations, Eq. (19) is computed by:

PU1
=

mgU1←BS
−1∑

n=0

n1∑
k=0

(
n1

k

)
·

·
ρkR
(
k +mgU1←R

− 1
)
!

n!βngU1←BS
ϕnρnBΓ

(
mgU1←R

) ·

· e
−

1

ϕρBβgU1←BS µ
−k−mgU1←R(

ξ2α2βgU1←R
+ ξ3α4βgU1←R

)mgU1←R
.

(20)

3.2. Outage Probability of U2

If R fails to decode x3 or R can decode but U2 can
not, then outage occurs in U2. Hence, the OP of U2 is

calculated by:

PU2
= Pr

(
log2 (1 + γx3

R←BS) < R2,

log2

(
1 + γx3

U2←R
)
< R2

)
= Pr

(
γx3

R←BS < δ2, γ
x3

U2←R < δ2
)

= 1− Pr
(
γx3

R←BS ≥ δ2, γ
x3

U2←R ≥ δ2
)
.

(21)

Replace Eq. (4) and Eq. (7) into Eq. (21), we have:

PU2 = 1− Pr


A1ρB |gR←BS |2 ≥ ρR|f |2 + 1,α4 − α2δ2︸ ︷︷ ︸

∆
=℘

 ρu|gU2←R|
2 ≥ δ2


= 1− Pr

(
A1ρB |gR←BS |2 ≥ ρR|f |2 + 1,

℘ρR|gU2←R|
2 ≥ δ2

)

= 1− Pr
(
A1ρB |gR←BS |2 ≥ ρR|f |2 + 1

)
︸ ︷︷ ︸

∆
=Ψ1

·

·Pr

(
|gU2←R|

2 ≥ δ2
℘ρR

)
︸ ︷︷ ︸

∆
=Ψ2

.

(22)

If δ2 >
α3

α1
and δ2 >

α4

α2
exist, the OP becomes

PU2
= 1, whereas for δ2 <

α3

α1
and δ2 <

α4

α2
it can be

expressed:

PU2 = 1−Ψ1Ψ2

= 1−
mgR←BS

−1∑
n=0

n1∑
k=0

mgU2←R
−1∑

n2=0

(
n1

k

)
·

·ρ
k
R (k +mf − 1)!

n!βngR←BS

(
1

ρBA1

)n1

·

·e
−

1

ρBA1βgR←BS

− δ2
℘ρRβgU2←R

Γ (mf ) (ξ1βf )
mf

·

·
(

ρR
ρBA1βgR←BS

+
1

ξ1βf

)−k−mf

·

· δn2
2

n2!
(
℘ρRβgU2←R

)n2
,

(23)

where Ψ1, Ψ2 can be calculated as follows:

Ψ1
∆
= P

(
|gR←BS |2 ≥

δ2
ρB (α3 − α1δ2)

(
ρR|f |2 + 1

))
=
∞∫
0

[
1− F|gR←BS |2

(
ρR
ρBA1

x+
1

ρBA1

)]
·

·f|f |2 (x) dx.

(24)
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From Eq. (2) and Eq. (3) we can calculate

F|gR←BS |2

(
ρR
ρBA1

x+
1

ρBA1

)
and f|f |2 (x) as follows:

F|gR←BS |2

(
ρR
ρBA1

x+
1

ρBA1

)

= 1− e
−

ρR
ρBA1βR←BS

x
·

·e
−

1

ρBA1βR←BS
mR←BS−1∑

n=0

1

n!βnR←BS
·

·
(

ρR
ρBA1

x+
1

ρBA1

)n
,

(25)

and

f|f |2 (x) dx =
xmf−1

Γ (mf )β
mf

f

exp

(
− x

βf

)
. (26)

Based on [32] and from the Eq. (24), Eq. (25),
Eq. (26), Ψ1 can be calculated as:

Ψ1 = e
−

1

ρBA1βgR←BS ·

·
∞∫
0

mgR←BS
−1∑

n=0

e
−

ρR
ρBA1βgR←BS

x

n!βngR←BS

·

·
(

ρR
ρBA1

x+
1

ρBA1

)n
xmf−1e

−
x

ξ1βf

Γ (mf ) (ξ1βf )
mf

dx

=
mgR←BS

−1∑
n=0

n1∑
k=0

(
n1

k

)
1

n!βngR←BS

·

·
(

ρR
ρBA1

)k(
1

ρBA1

)n1−k

e
−

1

ρBA1βgR←BS ·

·
∞∫
0

e
−

ρR
ρBA1βgR←BS

x xkxmf−1

Γ (mf ) (ξ1βf )
mf

e
−

x

ξ1βf dx.

(27)

Based on [32] and applying some polynomial expan-
sion manipulations, Ψ1 is given by:

Ψ1 =
mgR←BS

−1∑
n=0

n1∑
k=0

(
n1

k

)
ρkR

n!βngR←BS

(
1

ρBA1

)n1

·

·e
−

1

ρBA1βgR←BS (k +mf − 1)!

Γ (mf ) (ξ1βf )
mf

·

·
(

ρR
ρBA1βgR←BS

+
1

ξ1βf

)−k−mf

.

(28)

Similarly, the following result can be achieved:

Ψ2
∆
= P

(
|gU2←R|

2 ≥ δ2
℘ρR

)

= e
−

δ2
℘ρRβgU2←R

mgU2←R
−1∑

n2=0

δn2
2

n2!
(
℘ρRβgU2←R

)n2
.

(29)

3.3. Outage Probability of D1

The two situations to D2D user meet outage behavior
which is related to conditions: D1 fails to decode U2's
signal and D1 decodes x3 but fails to decode signal x2.
Therefore, the OP of D1 is computed as:

PD1 = Pr

(
log2

(
1 + γx3

D1←R
)
< R2,

log2

(
1 + γx2

D1←R
)
< Rd

)
= Pr

(
γx3

D1←R < δ2, γ
x2

D1←R < δd
)

= 1− Pr
(
γx3

D1←R ≥ δ2, γ
x2

D1←R ≥ δd
)
.

(30)

By replacing Eq. (9) and Eq. (10) into Eq. (30), PD1

can be recomputed by:

PD1
= 1− Pr

 α4ρR|gD1←R|
2

α2ρR|gD1←R|
2

+ 1
≥ δ2,

α2ρR|gD1←R|
2 ≥ δd



= 1− Pr

 |gD1←R|
2 ≥ δ2

(α4 − δ2α2) ρR
,

|gD1←R|
2 ≥ δd

α2ρR



= 1− e
−

ζ

βgD1←R

mgD1←R
−1∑

n=0

ζn

n!βngD1←R

(31)

where ζ
∆
= max

(
δ2

(α4 − δ2α2) ρR
,
δd

α2ρR

)
.

3.4. Throughput

Based on Eq. (20), throughput of U1 can be given by:

TU1
= (1− PU1

)R1

=



1−
mgU1←BS

−1∑
n=0

n1∑
k=0

(
n1

k

)
·

· ρkR (k +mg̃21
− 1)!

n!βngU1←BS
ϕnρnBΓ

(
mgU1←R

) ·

· e
−

1

ϕρBβgU1←BS µ
−k−mgU1←R(

ξ2α2βgU1←R
+ ξ3α4βgU1←R

)mgU1←R


R1

.

(32)
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From Eq. (23), we have:

TU2
= (1− PU2

)R2

=



mgR←BS
−1∑

n=0

n1∑
k=0

mgU2←R
−1∑

n2=0

(
n1

k

)
·

·ρ
k
R (k +mf − 1)!

n!βngR←BS

(
1

ρBA1

)n1

·

·e
−

1

ρBA1βgR←BS

− δ2
℘ρRβgU2←R

Γ (mf ) (ξ1βf )
mf

·

·
(

ρR
ρBA1βgR←BS

+
1

ξ1βf

)−k−mf

·

· δn2
2

n2!
(
℘ρRβgU2←R

)n2



R2.

(33)

Finally, throughput of D1 can be written as:

TD1
= (1− PD1

)Rd

=

e−
ζ

βgD1←R

mgD1←R
−1∑

n=0

ζn

n!βngD1←R

Rd.
(34)

4. Numerical Results

In this section, we numerically simulate some theoret-
ical results from some �gures to show the outage per-
formance. In particular, main parameters can be seen
in Tab. 1.

Figure 2 depicts how outage performance can be im-
proved at high transmit SNR ρb = ρB . It can be seen
that lower outage probability can be achieved as high
SNR. This situation can be explained that high SNR
leads to better SINR metrics and then such OP can
be enhanced. In the case of fading parameter m = 2,
the outage performance of the second user outperforms
that of the remaining users. The main reason is that
different conditions of decoding and power allocation
factors lead to different values of OPs for users. By
increasing, the quality of wireless channels, m = 4 is
reported as the best case OP. We can con�rm the ex-
actness of derived formulas by matching Monte-Carlo
and analytical simulations, i.e. such matching is very
tight. The OP performance of user U1 remains at �oor
value at high SNR. This can be explained that such OP
of user U1 depends on target rate R1. We can explain
similarly for OP performance of other users at a high
region of SNR.

Figure 3 depicts similar trends of OP once we com-
pare cases of target rates R1, R2 and Rd. It can be
seen that a lower required target rate results in better
OP performance for these considered users.

Fig. 2: Outage probability versus transmit SNR with different
m.

Fig. 3: Outage probability versus transmit SNR with different
target rates.

As presented in previous sections, Eq. (4), Eq. (5),
Eq. (6), Eq. (7) and Eq. (8) mainly depend on power
allocation factors, it is reported in terms of OP perfor-
mance as Fig. 4. It is still seen that the OP of user
U1 is limited at high SNR. It can be concluded that
by recon�guration for power levels at relay R, we can
change how good service to provide to users. The OP
performance of different users in NOMA is remarkably
improved at high SNR for user U1 and D2D users. This
is a promising result for designing NOMA in a practical
scenario. These trends of OP for three users are similar
to trends in Fig. 3. As a result, controlling such power
factors lead to a crucial impact on performance gaps
among three users in such NOMA system. It can be
seen that how large amount of self-interference makes
in�uence to outage performance of two users U1, U2 as
Fig. 5. It can be seen that high ξ3 leads to worse OP
performance. The main reason is that SINR is lower
and the corresponding OP will be worse. Especially,
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Tab. 1: All parameters in the related simulations.

� Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6
R1 ((bits·s−1)Hz−1) 1 � 1 1 1
R2 ((bits·s−1)Hz−1) 1 � 2 2 1
Rd ((bits·s−1)Hz−1) 1 � 3 3 1

ε1 0.082 0.082 0.082 � 0.082

ε2 1 1 1 � 1
ε3 0.12 0.12 0.12 � 0.12

m � 3 2 2 �
α1 0.05 0.05 � 0.1 0.05
α2 0.05 0.05 � 0.1 0.05
α3 0.95 0.95 � 0.9 0.95
α4 0.95 0.95 � 0.9 0.95

λgU1
← BS = λgD1

← R 0.01 0.01 0.01 0.01 0.01

λgR ← BS = λgU1
← R = λgU2

← R 0.01 0.01 0.01 0.01 0.01

λf 0.01 0.01 0.01 0.01 0.01

such outage performance can be very bad in the case
of ξ3 = 1. Therefore, limiting the crucial impact of self-
interference is a way to improve the system perfor-
mance.

Fig. 4: Outage probability versus transmit SNR with different
power allocation factors.

Fig. 5: Outage probability versus transmit SNR with different
self-interference levels.

In Fig. 6, we simulate the throughput performance
of the proposed scheme versus the transmit SNR
at the BS. As shown in previous �gures, the OP will
be improved signi�cantly at the high region of SNR.
As a result, throughput can approach the ceiling value
once SNR is greater than 30. By changing channel pa-
rameter m, just a slight change can be seen in these
throughput curves. Throughput along with OP per-
formance is helpful to give guidelines in the design
of NOMA.

Fig. 6: Throughput performance of U1, U2 and D1.

5. Conclusion

In this paper, we have studied a NOMA adopted
at downlink to serve normal users and D2D users.
In the proposed scheme, the �xed power allocation ap-
proach is adopted along with FD at the relay to im-
prove spectrum ef�ciency. We considered this mean-
ingful framework to look at outage and throughput
performance of many kinds of users, and then em-
ployed the NOMA technique to enable the downlink
signal processing. For the performance comparison
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on these users, we provided a comprehensive analy-
sis of the outage behavior and derived the closed-form
expressions of the outage probability. In the following,
we consider the different performances of these users.
A Nakagami-m fading model was employed to further
provide a general case of NOMA. Numerical results are
presented to verify the analysis in terms of the outage
and throughput performance.
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