6. CONCLUSION

In summary we have interested of two resources of digital FIR filters hardware implementation in Field Programmable Gate Arrays. One of them can be classified as standard advance when in the development process are used standard blocks from the Xilinx library and LogiBLOX generator. The second one can be classified as non – standard, but very modern advance, when in the development process is used New Symbol Wizard generator and the HDL platform for FIR filters description.

Very positive obtained result for us was been fact, that in the FPGA implemented digital filters working in real time with any video signals, generated by C/IR video sources, e.g. CCD cameras, recorders, etc.

In our opinion the described results find exploitation not only in the university education process, but in the special technical applications, too.

REFERENCES

Acknowledgement

This contribution is supported by the Slovakia Ministry of Education under VEGA Grant No. G-1:014463 and VTP Project No. 102VTP/2000.

FOUR-WAVE MIXING APPLICATION IN SEMICONDUCTOR OPTICAL AMPLIFIER

Radoslav Odrobišťák
* Department of Telecommunication, University of Žilina. Veľša 26, 010 01 Žilina

Summary

Four-wave mixing (FWM) in semiconductor optical amplifiers is an attractive mechanism for wavelength conversion in wavelength-division multiplexed (WDM) systems since it provides modulation format and bit rate transparency over wide tuning ranges. A series of systems experiments evaluating several aspects of the performance of these devices at bit rates of 2.5 and 10 Gbit/s are presented.

1. INTRODUCTION

As new applications for telecommunications mature, such as HDTV, multimedia services, and the world wide web, greater demand is being placed on the bandwidth of the existing telecommunications systems. Single-mode fiber (SMF) installed around the world has the capacity of many Tbit/s. Commercial high-speed systems operate in the range of 2.5-10 Gbit/s, thus leaving much room for more efficient use of the available fiber bandwidth. Increasing the channel bit rate beyond current levels will prove to be increasingly difficult since the cost of the supporting electronics increases and the achievable transmission distance decreases due to fiber dispersion. Consequently, a world-wide consensus is driving the utilization of wavelength-division multiplexing (WDM) technologies for a more effective use of the available fiber bandwidth [1].

An important element for implementation of WDM systems is a wavelength converter [2, 3]. Many technologies exist for the implementation of wavelength conversion [4]. Optoelectronic, cross-gain saturation [5], and cross-phase saturation [6] wavelength converters are candidate technologies that offer excellent performance, however, they are not transparent to modulation format [7]. Complete or so-called strict transparency is offered only by ultra-fast wave mixing techniques based on either four-wave mixing (FWM) or difference frequency generation (DFG) [8]. DFG performance has made impressive strides in recent years through use of quasi-phase matching in AIGaAs waveguides [9]. However, the use of quasi-phase matched waveguides mandates a fixed pump wavelength. This, in turn, means that a given input wavelength can be mapped to only one converted wavelength. FWM in optical fibers [10] is limited by this same pump wavelength restriction.

On the other hand, FWM in semiconductor optical amplifiers (SOA’s) [11-29] is insensitive to phase matching, offering arbitrary wavelength mapping. Offsetting this advantage are disadvantages associated with polarization dependent conversion as well as the required output filtering of spurious wavelengths.

Nonetheless, FWM SOA wavelength converters have demonstrated high bit rate switching between WDM channels [14, 15, 24], dispersion compensation by phase conjugation (or mid-span spectral inversion) [16, 19], timedomain demultiplexing, multiplexing format conversion, wavelength conversion of microwave subcarriers, and also limited signal processing. In particular, optical signal-to-noise ratio (OSNR), once considered the primary obstacle to any progress toward application of these devices has improved dramatically over the last year and further improvements seem likely.

Fig. 1 is a schematic for a typical FWM experimental configuration.

Two copolarized waves are coupled into the SOA. One of the waves, called the pump wave (Ep) with frequency ωp is typically stronger than the other wave (i.e., the input signal to be converted) called the probe wave (Ei) with frequency ωi. Inside the SOA, the copropagating pump and probe waves mix, forming dynamic gain and index gratings in the SOA through the mechanisms of carrier density modulation, carrier heating and spectral hole burning. The pump wave scattering from these gratings generates two waves, one at the probe frequency and one at a new frequency, ω0 = 2ωp - ωi.

Signal (ω0)

![Signal (ω0)](image)

CW laser (ωp)

![CW laser (ωp)](image)

Fig. 1. Schematic configuration for single-pump FWM.
A general block diagram for the wavelength converter used in the experiments described below is shown in Fig. 3. The converter's optical pump source is a tunable, external cavity diode laser. Its in-fiber output power is about 3 dBm. The pump and probe waves each pass through individual polarization controllers (PC's) before being combined by an 80/20 bidirectional coupler (BDC).

Output spectrum

![CW laser diagram](image)

Fig. 2. Typical output FWM spectrum.

The combined signals are then amplified in a high-power erbium-doped fiber amplifier (EDFA), with an output power of about 19 dBm. After amplification, the signals pass through a 10-nm-wide bandpass filter (BPF). As described in [28], [29], this filter increases the OSNR of the converted signal by suppressing the amplified spontaneous emission (ASE) contributed by the high-power EDFA in the spectral region of the converted signal. Following ASE prefiltering, these signals are coupled into the SOA where FWM generates the converted signal. The SOA is a fiber pigtailed unit from SDL based on a multimquantum-well compressively strained gain medium providing 25-dB fiber to fiber gain. A typical FWM spectral output for this setup is shown in Fig. 2. After mixing in the SOA, the pump and the original signal are suppressed using a 1-nm-wide tunable bandpass filter centered on the converted signal.

![SOA schematic](image)

Fig. 3. Schematic of wavelength converter design.

2. SIMULATION RESULT

The most frequently cited figures of merit for FWM wavelength converters are their conversion efficiency and the converted OSNR. The conversion efficiency is defined as the in fiber converted signal power at the SOA output divided by the in-fiber signal power at the SOA input and has been accurately modeled and thoroughly characterized ([11]-[13]). However, from a systems perspective, the conversion efficiency is not the primary figure of merit. By using EDFAs in appropriate positions, it is possible to attain nearly any desired conversion efficiency. The more crucial figure of merit is the OSNR for the converted signal. Its importance is particularly significant to the optimization of a given SOA FWM element for wavelength conversion, because optimum OSNR does not necessarily imply optimum conversion efficiency ([20]).

![Conversion efficiency graph](image)

Fig. 4. (a) Simulated conversion efficiency as a function of the total SOA input power. (b) Simulated OSNR (SNR) into a 1-Å bandwidth as a function of the total SOA input power, both with and without an ASE prefilter. (c) Simulated converted signal power as a function of wavelength shift. (d) Predicted OSNR into a 1-Å bandwidth as a function of the input-to-noise ratio.

This is true because whereas the amplification intrinsic to the SOA FWM element benefits the conversion efficiency, it also degrades the OSNR through generation of ASE in the converted signal band. This can be seen in Fig. 4(a) and (b) which show measured conversion efficiency and OSNR (wavelength downshift of 6 nm and 1-Å optical bandwidth) versus the total SOA input power. It can be seen that with increasing input power, and hence increased SOA saturation, conversion efficiency decreases while OSNR steadily rises. As such, it is always better to operate SOA FWM element in deep saturation to attain maximum OSNR. This will be the case for all experiments described below. Typical total SOA input power levels will be in the range of 12 dBm and will be boosted to this level using the high-power EDFA in Fig. 3. In addition, as described above, an ASE prefilter is used to purported ASE spectral components generated by this EDFA within the conversion band. This prefiltering typically results in an added 5 dB of OSNR. Other factors can also influence the magnitude of the OSNR: saturation power, gain, interaction length, and strength of the contributing nonlinear mechanisms. Assuming SOA operation in deep saturation as a given, the OSNR attainable with a fixed SOA structure is then primarily determined by two operating parameters: the wavelength shift and the pump to probe ratio. This dependence is illustrated in Fig. 4(c) and (d). Fig. 4(c) shows the measured converted signal power as a function of the wavelength shift. This wavelength dependence can be understood by modeling the various ultrafast dynamics that contribute to the nonlinear susceptibility function of the amplifier.

In the current experiment, they can be regarded as approximately constant since the total SOA input power is approximately fixed, due to the high level of saturation of the high-power EDFA shown in Fig. 3. As such, the overall roll off in the converted power (and hence efficiency and OSNR) apparent in Fig. 4(c) reflects the superposition of the three response functions in the above equation. In addition, the asymmetry in the up and down conversion response results from partial destructive/constructive phase interference between the contributing FWM mechanisms for wavelength upshift and downshift.

The pump-to-pipe (PQP) ratio is important for several reasons. First, since FWM results from a third-order nonlinear, the theoretically optimum PQP ratio at constant total power is 3 dB. This is illustrated in Fig. 4(d) which shows the predicted OSNR into a 1-Å bandwidth as a function of the PQP ratio for a wavelength downshift of 16 nm. Second, the PQP ratio establishes the magnitude of the probe relative to the SOA saturation power. This is true because in deep saturation, the SOA gain saturation characteristic has an effective saturation power approaching the total input power to the device (in the present case this is approximately the input pump power). As such, the PQP ratio gives an approximate measure of how much of the overall input power is converted into the device. In the present case this is approximately the input pump power. As such, the PQP ratio gives us an approximate measure of how much of the overall input power is converted into the device. In the present case this is approximately the input pump power.

This is true because whereas the amplification intrinsic to the SOA FWM element benefits the conversion efficiency, it also degrades the OSNR through generation of ASE in the converted signal band. This can be seen in Fig. 4(a) and (b) which show measured conversion efficiency and OSNR (wavelength downshift of 6 nm and 1-Å optical bandwidth) versus the total SOA input power. It can be seen that with increasing input power, and hence increased SOA saturation, conversion efficiency decreases while OSNR steadily rises. As such, it is always better to operate SOA FWM element in deep saturation to attain maximum OSNR. This will be the case for all experiments described below. Typical total SOA input power levels will be in the range of 12 dBm and will be boosted to this level using the high-power EDFA in Fig. 3. In addition, as described above, an ASE prefilter is used to purported ASE spectral components generated by this EDFA within the conversion band. This prefiltering typically results in an added 5 dB of OSNR. Other factors can also influence the magnitude of the OSNR: saturation power, gain, interaction length, and strength of the contributing nonlinear mechanisms. Assuming SOA operation in deep saturation as a given, the OSNR attainable with a fixed SOA structure is then primarily determined by two operating parameters: the wavelength shift and the pump to probe ratio. This dependence is illustrated in Fig. 4(c) and (d). Fig. 4(c) shows the measured converted signal power as a function of the wavelength shift. This wavelength dependence can be understood by modeling the various ultrafast dynamics that contribute to the nonlinear susceptibility function of the amplifier.

In the current experiment, they can be regarded as approximately constant since the total SOA input power is approximately fixed, due to the high level of saturation of the high-power EDFA shown in Fig. 3. As such, the overall roll off in the converted power (and hence efficiency and OSNR) apparent in Fig. 4(c) reflects the superposition of the three response functions in the above equation. In addition, the asymmetry in the up and down conversion response results from partial destructive/constructive phase interference between the contributing FWM mechanisms for wavelength upshift and downshift.

The pump-to-pipe (PQP) ratio is important for several reasons. First, since FWM results from a third-order nonlinear, the theoretically optimum PQP ratio at constant total power is 3 dB. This is illustrated in Fig. 4(d) which shows the predicted OSNR into a 1-Å bandwidth as a function of the PQP ratio for a wavelength downshift of 16 nm. Second, the PQP ratio establishes the magnitude of the probe relative to the SOA saturation power. This is true because in deep saturation, the SOA gain saturation characteristic has an effective saturation power approaching the total input power to the device (in the present case this is approximately the input pump power). As such, the PQP ratio gives an approximate measure of how much of the overall input power is converted into the device. In the present case this is approximately the input pump power. As such, the PQP ratio gives an approximate measure of how much of the overall input power is converted into the device. In the present case this is approximately the input pump power.
A general block diagram for the wavelength converter used in the experiments described below is shown in Fig. 3. The converter’s optical pump source is a tunable, external cavity diode laser. Its in-fiber output power is about 3 dBm. The pump and probe waves each pass through individual polarization controllers (PCs) before being combined by an 80/20 bidirectional coupler (BDC).

Output spectrum

![Fig. 2. Typical output FWM spectrum.](image)

The combined signals are then amplified in a high-power erbium-doped fiber amplifier (EDFA), with an output power of about 19 dBm. After amplification, the signals pass through a 10-nm-wide bandpass filter (BPF). As described in [28, 29], this filter increases the OSNR of the converted signal by suppressing the amplified spontaneous emission (ASE) contributed by the high-power EDFA in the spectral region of the converted signal. Following this ASE prefiltering, these signals are coupled into the SOA where FWM generates the converted signal. The SOA is a fiber pigtailed unit from SDL based on a multiquantum-well compressively strained gain medium providing 25-dB fiber to fiber gain. A typical FWM spectral output for this setup is shown in Fig. 2. After mixing in the SOA, the pump and the original signal are suppressed using a 1-nm-wide tunable bandpass filter centered on the converted signal.

![Fig. 3. Schematic of wavelength converter design.](image)

2. SIMULATION RESULT

The most frequently cited figures of merit for FWM wavelength converters are their conversion efficiency and the converted OSNR. The conversion efficiency is defined as the in fiber converted signal power at the SOA output divided by the in-fiber signal power at the SOA input and has been accurately modeled and thoroughly characterized (11)-(13). However, from a systems perspective, the conversion efficiency is not the primary figure of merit. By using EDFAs in appropriate positions, it is possible to attain nearly any desired conversion efficiency. The more crucial figure of merit is the OSNR for the newly generated signal. Its importance is particularly significant to the optimization of a given SOA FWM element for wavelength conversion, because optimum OSNR does not necessarily imply optimum conversion efficiency (20).

This is true because whereas the amplification intrinsic to the SOA FWM element benefits the conversion efficiency, it also degrades the OSNR through generation of ASE in the converted signal band. This can be seen in Fig. 4(a) and (b) which show measured conversion efficiency and OSNR (wavelength down-shift of 6 nm and 1-A optical bandwidth) versus the total SOA input power. It can be seen that with increasing input power, and hence increased SOA saturation, conversion efficiency decreases while OSNR steadily rises. As such, it is always better to operate SOA FWM element in deep saturation to attain maximum OSNR. This will be the case for all experiments described below. Typical total SOA input power levels will be in the range of 12 dBm and will be boosted to this level using the high-power EDFA in Fig. 3. In addition, as described above, an ASE prefilter is used to strip the ASE spectral components generated by this EDFA within the conversion band. This prefiltering typically results in an added 5 dB of OSNR. Other factors can also influence the magnitude of the OSNR: saturation power, gain, interaction length, and strength of the contributing nonlinear mechanisms. Assuming SOA operation in deep saturation as a given, the OSNR attainable with a fixed SOA structure is then primarily determined by two operating parameters: the wavelength shift and the pump to probe ratio. This dependence is illustrated in Fig. 4(c) and (d). Fig. 4(c) shows the measured converted signal power as a function of the wavelength shift. This wavelength dependence can be understood by modeling the various ultrafast dynamics that contribute to the nonlinear susceptibility function of the amplifier.

In the current experiment, they can be regarded as approximately constant since the total SOA input power is approximately fixed, due to the high level of saturation of the high-power EDFA shown in Fig. 3. As such, the overall roll off in the converted power (and hence efficiency and OSNR) apparent in Fig. 4(c) reflects the superposition of the three response functions in the above equation. In addition, the asymmetry in the up and down conversion response results from partially destructive/constructive phase interference between the contributing FWM mechanisms for wavelength up- and down-conversion.

The pump-to-probe (PQ) ratio is important for several reasons. First, since FWM results from a third-order nonlinearity, the theoretically optimum PQ ratio at constant total pump power is 3. This is illustrated in Fig. 4(d) which shows the predicted OSNR into a 1-A bandwidth as a function of the PQ ratio for a wavelength down-shift of 16 nm. Second, the PQ ratio establishes the magnitude of the probe relative to the SOA saturation power. This is true because in deep saturation, the SOA gain saturation characteristic has an effective plateau that approaches the total input power to the device (in the present case this is approximately the input pump power). As such, the PQ ratio gives an approximate indication of parasite gain saturation induced by the input signal. Such parasitic saturation can degrade the converted signal through intersymbol interference (ISI) and clipping that accompanies modulation in the modal gain of the SOA.

3. CONCLUSION

Wavelength conversion by FWM in SOA's is the only method for wavelength conversion that provides both strict transmission and arbitrary wavelength mapping. In this paper, we have provided an update on state-of-the-art results concerning wavelength conversion in high-speed, multichannel conversion and cascaded conversion. Nonetheless, much progress has been made over the last two years on the issue of OSNR that once was considered the primary impediment to success and this bodes well for future progress on these new fronts.

REFERENCES

RELIABILITY OF TELECOMMUNICATION SYSTEM BY VARIOUS REPAIR REGIME

Dusan Trstenak, Ladislav Schwartz, Milan Trunkvalter, Roman Baroš

Faculty of Electrical Engineering, University of Žilina, Veľký dial, 01026 Žilina, Slovak Republic

Summary: In the past the reliability of the telecommunication system was evaluated on the simple assumption of the independence of elements. Computation of steady-state series–state series – system availability depends on specific assumptions made about the non failed items during the system failure. In the article is more exact method of calculating global reliability with consideration of various regimes of maintenance.

1. INTRODUCTION

In telecommunication systems (namely in telecommunication network) very often occur the calculation of reliability series elements evaluated by availability. Steady-state availability (also called: limiting availability) is defined as the long-term fraction of time that an item is available.

When a series systems fails due to the failure of any one of its components, all the other components take a rest and are therefore not at risk of failure.

In the text will be used the following notation:

\(s \) statistical (ly)
\(n \) number of components in the series – system
\(\lambda_i \) failure rate of component \(i \)
\(\mu_i \) repair rate of component \(i \)
\(n_s \) number of steady-state components
\(p_i \) steady - state probabilities of state \(i \)

2. ASSUMPTIONS

1) Failure of any item in the series constitutes failure of the system (definition of series in reliability terms).
2) At system failure as defined in #1, all other items in the series stop, and cease to be at risk of failure until the failed item is restored and system is re-started.
3) Steady – state availability of an item is the ratio of running time, (same for all items) to: “running time” plus “failure – repair time”, (different for each item), over a long, theoretically infinite, period. System free time does not enter the calculations.
4) The maintenance policy for all items is fixed for the period of data collection upon which the estimates of system steady – state availability are based. The policy can be failure – only.

5) Items in this context can be complex assemblies or simple parts. The theoretical basis changes but the practical results does not.

3. MODEL DESCRIPTION

Consider a series – system of \(n \) \(s \)-independent components, i.e. a failure of any component causes a system failure [1, 2].

Case 1: Non-failed components with an operational state during repair.

Components are repaired immediately at failure while other non-failed components continue to operate, or at least remain energized, and can fail (and hence, age) during the repair of the originated failed components. The steady – state availability for a series – system of \(n \) \(s \)-independent components is the product of the component availabilities.

\[
A_{sys} = \prod_{i=1}^{n_s} a_i = \prod_{i=1}^{n_s} \frac{\mu_i}{\mu_i + \lambda_i}.
\]

Case 2: Non-failed components with a switch-off during repair.

Components are repaired immediately at failure while other non-failed components are also immediately taken out of operation, or at least switched-off and cannot fail (therefore do not age) until the failed component is repaired.

A series system with constant \(\lambda_i, \mu_i \) can be represented by a matrix of conditional rates of change of state from \(S_i \) (row) to \(S_j \) (column), as

\[
\begin{bmatrix}
-\sum_{i=1}^{n_s} \lambda_i & \lambda_2 & \ldots & \lambda_{n_s} \\
\mu_1 & -\mu_2 & \ldots & 0 \\
0 & \mu_3 & -\mu_4 & \ldots \\
0 & \ldots & \ldots & \ldots \\
0 & \ldots & \lambda_{n_s} & -\mu_{n_s}
\end{bmatrix}
\]

\[
\Phi = \begin{bmatrix}
\mu_1 & 0 & \ldots & 0 \\
0 & \mu_2 & \ldots & 0 \\
0 & \ldots & \ldots & \ldots \\
0 & \ldots & \lambda_{n_s} & -\mu_{n_s}
\end{bmatrix}
\]

(2)