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Abstract. This paper presents Signal Flow Graph
(SFG) approach-based realization of Single Input Mul-
tiple Output (SIMO) filter topologies. A differentia-
tor is placed as basic building block. A total of sixteen
variants are derived from the proposed differentiator-
based SFG. The Operational Trans-Resistance Ampli-
fier (OTRA), an active block having low parasitics
at input terminals, is used to validate the proposed
methodology. All the derived filter structures use three
OTRAs, six resistors and two capacitors. The filter
performance parameters can be adjusted independently.
The functional verification of the proposed method is
done via SPICE simulations using 0.18 µm CMOS
technology parameters from MOSIS.
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1. Introduction

The Continuous-Time (CT) filters are widely used in
consumer electronics, instrumentation, military ord-
nance, telecommunications and radar systems, etc.
Therefore, considerable research efforts have been de-
voted to developing CT filters based on wide variety
of active blocks. The bandwidth of traditional ac-
tive blocks is limited by closed-loop voltage gain and
presence of the parasitic elements influences the per-
formance of filter. The active block, OTRA [1], uses
current feedback technique, which makes its bandwidth
almost independent of the gain. Additionally, the par-
asitic impedances at input terminals are low and have

negligible effect on circuits. Therefore, OTRA-based
CT filters have been investigated in recent past [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] and [19] and they can be categorized
as (i) single and (ii) multiple OTRA-based structures.
Though single OTRA-based filters [2], [3], [4] and [5]
are useful when power consumption is important, they
show larger sensitivity to component variation and are
less versatile than their multiple OTRA-based coun-
terparts [1], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] and [19]. The salient features of the
available multiple OTRA-based CT filters are listed
below:

• A single response is available in [1], [6], [7], [8],
[10], [16] and [17], whereas [8], [9], [11], [12], [13],
[14] and [15] offer multiple responses.

• Single/Multiple output filters [6], [7], [8] and [16]
may, however, give other responses by choosing
appropriate input excitation terminal.

• Filters [1], [8], [10], [16] and [18] impose condition
on component/switch selection for obtaining the
responses.

The underlying principle of these filters [1], [6], [10],
[11], [12], [13], [14] and [16] is connection of lossy and
lossless integrator. In the recent past, the researchers
have developed few differentiator-based signal process-
ing and generating circuits [7], [8], [9], [15], [20], [21],
[22], [23], [24], [25], [26], [27] and [28] finding appli-
cations in the area of control system and biomedical
instrumentation. However, the area is not much ex-
plored, as evident from the limited literature avail-
able. Considering this, differentiator-based SIMO filter
topologies designed using SFG-based approach are pro-
posed in this paper and OTRA is used to validate it.
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It is pertinent to mention here that SFG-based ap-
proach, with integrators, has been employed in [29],
[30], [31], [32] and [33].

The paper is arranged in five sections. Section 2.
includes the discussion on the proposed SFG, followed
by a brief review of OTRA and basic signal process-
ing blocks designed using OTRA. The OTRA-based
SIMO filter topologies are also included in the same
section subsequently. The non-ideality analysis is given
in Sec. 3. , followed by simulation results in Sec. 4.
The paper is finally concluded in Sec. 5.

2. Circuit Description

2.1. The Proposed SFG

The proposed differentiator-based SFG, which uses two
differentiators in forward path, is depicted in Fig. 1.
The coefficients ki (i ∈ {1, 2, 3, 4}) may assume value
1 and −1. Four different SFGs can be generated from
Fig. 1 by selecting the values of k1 and k2 respectively
as (1, 1), (1,−1), (−1, 1) or (−1,−1) as depicted in
Fig. 2. These SFGs represent four different topologies
and are referred respectively as topology 1, topology
2, topology 3 and topology 4. The values of k3 and k4
are chosen so that appropriate transfer functions can
be obtained.
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Fig. 1: The proposed differentiator-based SFG.

It may be noted that the SFG in Fig. 1 uses an in-
verting differentiator, followed by a non-inverting dif-
ferentiator. Alternate SFGs can be derived by placing

• a non-inverting differentiator followed by an in-
verting differentiator,

• two non-inverting differentiators, or

• two inverting differentiators.

The resulting SFGs are depicted in Fig. 3.

In each SFG in Fig. 3, k1 and k2 may further be se-
lected as (1, 1), (1,−1), (−1, 1) or (−1,−1), thus pro-
viding a total to sixteen SFGs, and are shown in Fig. 4.
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Fig. 2: SFGs generated from Fig. 1 for k1 and k2 as (a) topol-
ogy 1, (b) topology 2, (c) topology 3, (d) topology 4.

2.2. The OTRA

The OTRA is an active block with two low-impedance
input terminals and a low-impedance output terminal.
The circuit symbol of OTRA is given in Fig. 5 and its
terminals are characterized by matrix of Eq. (1):VpVn

Vo

 =

 0 0 0
0 0 0
Rm −Rm 0

 ·
IpIn
I0

 , (1)

where Rm is trans-resistance gain of OTRA. The value
of Rm is ideally infinity; therefore, OTRA is generally
used in negative feedback configuration.
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Fig. 3: Alternate SFGs.
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(a) Topology 5: k1 = 1, k2 = 1.
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(b) Topology 6: k1 = 1, k2 = −1.
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(c) Topology 7: k1 = 1, k2 = 1.
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(d) Topology 8: k1 = 1, k2 = −1.
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Fig. 4: The SFG structures.
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Fig. 5: The OTRA block.

A close inspection of SFGs in Fig. 2 and Fig. 4
reveals that the circuit realization would require
voltage addition-subtraction followed by amplifier
(inverting / non-inverting), and differentiators (invert-
ing / non-inverting).

The OTRA-based realization of voltage addi-
tion/subtraction is shown in Fig. 6. It uses five resistors
and one OTRA. By equating the currents of inverting
and non-inverting terminals, the output of the circuit
from Fig. 6 is obtained as:

Vo = R5

(
V1
R1

+
V2
R2
− V3
R3
− V4
R4

)
. (2)

Exchanging (Vi, Ri), where i ∈ {1, 2} with (Vj , Rj),
where j ∈ {3, 4} in Fig. 6 yields the following relation:

Vo = −R5

(
V1
R1

+
V2
R2
− V3
R3
− V4
R4

)
. (3)

It may be noted that Eq. (3) is inverting form of
Eq. (2).
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Fig. 6: OTRA-based realization of voltage addi-
tion/subtraction.

By choosing the values of resistances appropriately,
the desired addition-subtraction can be performed.
Equation (2) provides non-inverting output, whereas
Eq. (3) gives an inverting output.

The OTRA-based circuits of inverting and non-
inverting differentiators are given in Fig. 7 and their
respective outputs are given by:

Vo = −sCRVin, (4)

Vo = −sCRVin. (5)
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Fig. 7: OTRA-based realization of (a) inverting and (b) non-
inverting differentiators.

2.3. OTRA-Based Realization of
SFGs

The OTRA-based realization of SFGs can be obtained
by using the basic blocks from Fig. 6 and Fig. 7.
The corresponding circuit realizations of SFGs from
Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d) are de-
picted respectively in Fig. 8(a), Fig. 8(b), Fig. 8(c)
and Fig. 8(d). It may be noted that the realizations
from Fig. 8(a) and Fig. 8(b) are same as those given in
Fig. 8(c) and Fig. 8(d) respectively, since their corre-
sponding k1k2 product terms are the same.
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Fig. 8: OTRA-based realization of SFGs from Fig. 2.

The transfer functions of the topology in Fig. 8(a)
are obtained as:

V1
Vin

=
k

D(s)
,

V2
Vin

=
−k (sR2C2)

D(s)
,

V3
Vin

=
−k
(
s2R1R2C1C2

)
D(s)

,

(6)

where

D(s) = 1 +
sR2R3C2

R5
+
s2R1R2R3C1C2

R4
. (7)
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The transfer functions of the topology in Fig. 8(b) are
computed as:

V1
Vin

=
−k
D(s)

,

V2
Vin

=
k (sR2C2)

D(s)
,

V3
Vin

=
k
(
s2R1R2C1C2

)
D(s)

.

(8)

It may be noted that V1, V2 and V3 respectively rep-
resent low pass, band pass and high pass responses. All
the transfer functions at different nodes represented by
Eq. (6) and Eq. (8) are characterized by following pole
frequency (ω0), bandwidth (ω0

Q ) and quality factor (Q):

ω0 =

(
R4

R1R2R3C1C2

)1

2
, (9)

ω0

Q
=

R4

R1R5C5
, (10)

Q = R5

(
R1C1

R2R3R4C2

)1

2
. (11)

It is clear from Eq. (9), Eq. (10) and Eq. (11) that
both bandwidth and quality factor can be adjusted in-
dependently by varying R5 without modifying the pole
frequency. The pole frequency may be varied by chang-
ing Ri and Ci (i = 1, 2) and quality factor may be kept
constant by assuming R3 = R4 = R5 and R1

R2
= C2

C1
.

Further, the gain of the filter responses can be changed
by varying the value of k.

The OTRA-based realizations of the SFGs listed in
Fig. 4 are also obtained and omitted for the sake of
brevity. The transfer functions are similar to the one
given in Eq. (6), Eq. (7) and Eq. (8).

3. The Non-Ideality Analysis

The response of the filter may deviate due to non-
ideality of OTRA. Ideally, the trans-resistance gain Rm

is assumed to approach infinity. However, in practice,
Rm is a frequency-dependent finite value. Considering
a single-pole model for trans-resistance gain, Rm(s) can
be expressed as:

Rm(s) =
R0

1 +
s

ω

, (12)

where R0 is low-frequency trans-resistance gain. For
high-frequency applications, the trans-resistance gain
Rm(s) is approximated as:

Rm(s) ≈ 1

sCp
, (13)

where
Cp =

1

R0ω0
. (14)

Taking this effect into account, the transfer functions
in Fig. 8(a) in presence of finite transimpedance are
computed as:

V1
Vin

∣∣∣∣
n

=
kn

Dn(s)
,

V2
Vin

∣∣∣∣
n

=
−kn (sR2C2)

Dn(s) (1 + sR2Cp2)
,

V3
Vin

∣∣∣∣
n

=
−kn

(
s2R1R2C1C2

)
Dn(s) (1 + sR2Cp2) (1 + sR1Cp3)

,

(15)

where

Dn(s) = (1 + sR3Cp1) +
sR2R3C2

R5 (1 + sR2Cp2)
+

+
s2R1R2R3C1C2

R4 (1 + sR1Cp3) (1 + sR2Cp2)
.

(16)

It is clear from Eq. (15) and Eq. (16) that transfer func-
tions modify in presence of non-ideality. These equa-
tions reduce to Eq. (6) and Eq. (7) by choosing the
operating frequency below min

(
1

R3Cp1
, 1
R2Cp2

, 1
R1Cp1

)
.

4. Simulation Results

To verify the proposed scheme, the functionality of the
filter from Fig. 8(a) is tested through SPICE simu-
lations using CMOS OTRA architecture of [34] and
0.18 µm CMOS process parameters provided by MO-
SIS (AGILENT). Supply voltages ±1.5 V are taken.
The simulation is performed for pole frequency of
159 kHz and unity quality factor. All the resistances
are taken as 10 kΩ and capacitor is taken as 100 pF.
The simulated frequency response for low pass, band
pass and high pass for the circuit from Fig. 8(a) are de-
picted in Fig. 9. The total power consumption is found
to be 6 mW.

The other set of simulations is carried out to show
tuning of band pass filter center frequency and gain.
The center frequency is varied by changing R1 and R2

simultaneously from 5 kΩ to 20 kΩ in step of 5 kΩ while
keeping all other resistances and capacitances at 10 kΩ
and 100 pF respectively. This setting leads to constant
Q value. Figure 11 shows the simulated band pass
response for variation in center frequency and Q with
change in resistance. It may be noted that Q varies
slightly from unity value, which may be attributed to
non-idealities of OTRA.

For variation of band pass response gain while keep-
ing center frequency constant, all resistances except the
one connected to input terminal and capacitances are
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Fig. 9: Simulated low pass, band pass and high pass responses
of the circuit from Fig. 8(a).

0.0 0.2 0.4 0.6 0.8 1.0
-100

-50

0

50

100
input
output

Time (ms)

V
o

lt
ag

e 
(m

V
)

Fig. 10: Time domain waveform of low pass response.

chosen as 10 kΩ and 100 pF, respectively. The values
of k = 1, 2 and 4 are taken to obtain gain of 1, 2 and
4, respectively. The simulated response is depicted in
Fig. 12, which agrees with theoretical predictions.

The SPICE simulations are also performed to ob-
serve the time domain behavior. All resistances and
capacitances are kept at 10 kΩ and 100 pF, respec-
tively. A 5 kHz sinusoidal input of 50 mV amplitude is
applied to the filter and the low pass transient response
is depicted in Fig. 10. Total harmonic distortion is also
measured by changing input sinusoid amplitude and its
value was found to be within 3 % till 150 mV ampli-
tude. Another simulation is done by applying three
sinusoids having frequencies of 10 kHz, 100 kHz and
1 MHz, respectively. Figure 13 shows the input and
output waveforms and corresponding frequency spec-
trums. It is clear that the sinusoid having 1 MHz fre-
quency is significantly attenuated.

Monte Carlo simulations are also done to check ro-
bustness of the proposed circuits by considering Gaus-
sian distribution for fifty runs with 5 % variations in
all passive components. For brevity, the histogram of
circuit from Fig. 8(a) at LPF node output is depicted
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Fig. 11: Simulated (a) band pass frequency response, (b) center
frequency and (c) Q variation.

in Fig. 14, it implies the circuit is well operated within
the theoretical frequency.

The performance parameters related to power con-
sumption, THD and output noise are presented in [11],
[12], [13] and [14]. The same is placed in Tab. 1. The
higher power consumption of the proposed topology in
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Fig. 12: Simulated (a) frequency band pass response, (b) Q variation, (c) gain variation and (d) center frequency variation.

0 100 200 300
-200

0

200

O
u

tp
u

t 
V

o
lt

ag
e 

(m
V

)

0 100 200 300
-200

0

200

In
p

u
t 

V
o

lt
ag

e 
(m

V
)

Time (μs)

(a)

0 1 2 3 4 5
0

25

50

Frequency (MHz)

In
p

u
t 

V
o

lt
ag

e 
(m

V
)

0 1 2 3 4 5
0

25

50

O
u

tp
u

t 
V

o
lt

ag
e 

(m
V

)

(b)

Fig. 13: Simulated transient low pass response (a) input and output waveforms and its (b) frequency spectrum.
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Tab. 1: Summary of performance parameters.

Ref. OTRA implementation Power consumption
(%)

THD
(%)

Output noise
(µV·Hz−

1
2 )

[11] CMOS based 4.04 1.7 –
[12] CFOA based 421 – 4
[13] CMOS based 2.58 5.7 0.722
[14] CMOS based 1.09 6.74 0.316

Proposed CMOS based 6 3 0.140
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Fig. 14: Monte Carlo simulation results.

compatison with other CMOS-based OTRA implemen-
tations may be observed. However, the output noise for
the proposed topology is lowest.

5. Conclusion

An alternate realization for Single Input Multiple Out-
put (SIMO) filter topologies has been presented in
this contribution wherein differentiator is used as ba-
sic building block. An SFG is proposed for this pur-
pose, which can further be used to derive sixteen SFGs
through proper selection of inverting and non-inverting
differentiators placed in loop; and their addition. The
active block OTRA is used to verify the concept. All
the realizations use three OTRAs, six resistors and
two capacitors. The bandwidth and quality factor of
these configurations can be adjusted independently of
the pole frequency. The functional verification of the
proposed method is done through SPICE simulations
using 0.18 µm CMOS technology parameters from MO-
SIS.
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