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Abstract. This paper presents an improved single-
phase Multilevel Inverter (MLI) which is conceptual-
ized to reduce power switches along with separate DC
voltage sources. Compared with recent modular topolo-
gies, the proposed MLI employs a reduced number of
components. The proposed inverter consists of a com-
bination of two circuits, i.e., the level generation and
polarity generation parts. The level generation part is
used to synthesize different output voltage levels, while
the polarity inversion is performed by a conventional
H-bridge circuit. The performance of the proposed
topology has been studied using s single-phase seven-
level inverter, which utilizes seven power switches and
three independent DC voltage sources. Model Predic-
tive Control (MPC) is applied to inject a sinusoidal
current into the utility grid which exhibits low Total
Harmonic Distortion (THD). Tests, including a change
in grid current amplitude as well as operation un-
der variation in Power Factor (PF), have been per-
formed to validate the good performance obtained us-
ing MPC. The effectiveness of the proposed seven-level
inverter has been verified theoretically using MATLAB
Simulink. In addition, Real-Time (RT) validation us-
ing the dSPACE-CP1103 has been performed to con-
firm the system performance and system operation us-
ing digital platforms. Simulation and RT results show
improved THD at 1.23 % of injected current.
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1. Introduction

Voltage Source Inverter (VSI) can be considered as an
industry standard for DC to AC conversion systems.
The progress of power electronics leads to the require-
ment of VSI for many applications such as renewable
energy systems, UPS, motor drives, [1], [2], [3] and [4].
Traditionally, the inverter is an H-bridge circuit which
has the ability to develop a three-level output voltage
waveform. However, the three-level output voltage has
a bad harmonic profile [5]. For enhancing the quality of
inverter output waveform, Multilevel Inverters (MLI),
which provide staircase waveforms and improved har-
monic profile, are a possible solution.

Conventional topologies of MLI are extensively stud-
ied and can be classified as; Neutral Point Clamped
(NPCMLI), Flying Capacitor (FCMLI), and Cascaded
H-bridge (CHBMLI) [6], [7] and [8]. CHBMLI has
been considered as the best approach for increasing the
number of levels due to modularization, low cost, and
simplicity of implementation. However, increasing the
number of levels with the CHBMLI leads to increased
cost as well as reduced inverter efficiency. On the other
hand, using a lower number of levels requires a large
value of the LC output filter to reduce the harmonics
content to an acceptable limit [9].

Most researchers are concerned with topologies that
offer good harmonic profile and low cost. In [10],
a single-phase seven-level transformer-less inverter was
presented. However, it utilizes a high number of con-
ducting devices for each output voltage level that leads
to higher power loss. A five-level inverter was presented
in [11] using four DC voltage sources, while the same
number of DC voltage sources can generate a higher
number of voltage levels in conventional topologies.
A seven-level MLI was presented in [12] and modified
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in [13] to develop a nine-level MLI. These topologies
offer good multilevel performance. However, the non-
modular structure of these topologies is the main re-
striction. In [14], MLI was generated thanks to the
multi-winding transformer, but the cost is high for high
power applications. In [15], a five-level inverter was
proposed utilizing only six power switches with two
isolated DC power supplies. However, it increases the
system cost and size, in addition, non-modularity for
increasing output voltage levels is not feasible. A five-
level inverter was proposed in [16] by using six power
switches and coupled inductors. However, the coupled
inductors increase the overall cost, size, and weight.
A four-level inverter was proposed in [17], however,
this topology is valid only for even voltage levels and
not able to provide zero states. In order to overcome
the aforementioned problems, a new MLI is proposed
to provide an output voltage with fewer numbers of
components. The proposed inverter is investigated
at seven-level output voltage with only seven power
switches and three independent DC voltage sources.

The control strategies play a crucial role in the in-
vestigation of MLI for voltage or current control to
ensure reliable and efficient operation [18]. For a grid-
connected MLI, the output voltage is nearly constant
in this case, the current is being controlled to control
power transmitted to the grid. Grid-connected MLI
plays an emerging topic in power systems. Therefore,
the harmonic generated by the injected current must
be limited to a low value to follow the IEEE harmonic
factor standard [19]. As power quality is a significant
point, the current controller must provide high qual-
ity with minimal harmonics. Several Current control
topologies have been studied which concerning MLI
like Proportional-Integral controller (PI), Hysteresis
Current Control (HCC), Proportional-Resonance con-
trol (PR) [20], etc. All those controllers have some
drawbacks; moreover, thanks to the advance in tech-
nology and DSP controllers that handle faster calcula-
tions, a Model Predictive Controller (MPC) becomes
a powerful method for power converter applications.
MPC receives great attention due to its facility in
a wide range of power converters and drives applica-
tions [21].

The goal of this paper is to connect the proposed
MLI to the grid with a good dynamic performance
and low harmonic content. A seven-level inverter for
grid connection is presented in this paper, where the
injected current is controlled using MPC. This paper
is organized as follows: the general structure for the
proposed inverter and the generation of seven-level in-
verter with its possible states are presented in Sec. 2.
and Sec. 3. respectively. Discrete-time model for the
inverter using MPC and the current control scheme are
provided in Sec. 4. and Sec. 5. respectively. Sec-
tion 6. and Sec. 7. provide simulation results and

real-time validation, respectively. Section 8. presents
a comparative study with different topologies. Finally,
Sec. 9. concludes the main results.

2. General Structure of the
Proposed MLI

The proposed structure for MLI is shown in Fig. 1. It
consists of two circuits; the Level Generation (LGP)
and Polarity Generation Parts (PGP). The LGP con-
tains a number DC voltage source (NDC) which can
be replaced with series-connected capacitors supplied
from a single DC voltage source instead of using mul-
tiple DC voltage sources and power switches (NSW )
as is responsible for providing different voltage levels.
The PGP is a traditional H-bridge circuit as it has
two functions; controlling the polarity of different out-
put voltage levels in addition to generating the zero-
voltage states. As shown, the proposed inverter con-
sists of n number of cells. Each cell is composed of
one DC voltage source (or DC capacitor) in series with
one power switch without body diode to avoid a short
circuit between sources. Only the 1st cell has a power
switch with an anti-parallel diode where, the function
of the diode is to produce the first levels (±VDC), while
the power switch is to provide a free-wheeling path with
inductive loads.

For series-connected capacitors, the voltage across
capacitors will deviate during the switching process for
the generation of output voltage levels. Therefore, the
voltage balance across series-connected capacitors can
be achieved by modifying the modulation technique
[12] or using a voltage balancing circuit [12], etc. The
relation between, NDC , and NSW based on the number
of levels, NLEV EL are calculated as follows:

NDC =
1

2
(NLEV EL − 1), (1)

NSW =
1

2
(NLEV EL − 1) + 4. (2)

The important parameter of MLI is Total Standing
Voltage (TSV ) also named by maximum blocking volt-
age of the inverter (V binv). The selection of power
switches is based mainly on the blocking voltage across
it because this value determines the power rating of
switches. As this value is reduced, the total cost of the
inverter will also be reduced. The blocking voltage of
power switches in LGP is equal to:

V bs1 = V bs2 = V bs3 = ... = V bsn = VDC . (3)

While the blocking voltage of power switches in PGP
(H-bridge circuit) is equal to the amplitude of the out-
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Tab. 1: Switching states.

Voltage vectors Output levels
Switching states

S1 S2 S3 Q1 Q2 Q3 Q4

+
ve

V0 0 0 0 0 0 1 0 1*
V1 3VDC 0 0 1 1 1 0 0
V2 2VDC 0 1 0 1 1 0 0
V3 VDC 1* 0 0 1 1 0 0
V4 0 0 0 0 1 0 1* 0

−
ve

V5 0 0 0 0 1* 0 1 0
V6 −VDC 1* 0 0 0 0 1 1
V7 −2VDC 0 1 0 0 0 1 1
V8 −3VDC 0 0 1 0 0 1 1
V9 0 0 0 0 0 1* 0 1

1* denotes current flow through the body diode where 1=ON & 0=OFF.

put voltage based on the following equation:

V bQ1 = V bQ2 = V bQ3 = V bQ4 = Vabmax = n · VDC .
(4)

Where, Vabmax is the maximum amplitude of the gen-
erated output voltage. TSV equals to total blocking
voltage of power switches in LGP (V bLGP ) and PGP
(V bPGP ) and can be calculated as presented in the fol-
lowing equations,

V bLGP = V bs1+V bs2+V bs3+...+V bsn = nVDC . (5)

V bPGP = V bQ1+V bQ2+V bs3+V bsn = 4 ·nVDC . (6)

TSV = V binv = 5 · nVDC . (7)

From Eq. (7), the maximum blocking voltage based on
number of cells and the value of DC voltage sources.

As seen from Eq. (4), this topology is not suitable
for high voltage application as stress in H bridge carry
total rated output voltage of the inverter. The pro-
posed inverter can be used with application requires
power ranges less than 10 kW. In order to be used with
higher power, cascaded connection from the proposed
topology can be used.
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Fig. 1: Proposed multilevel inverter.

3. Seven-Level Output Voltage

The construction of the proposed seven-level inverter is
shown in Fig. 1. It consists of seven power switches and

three cells with three DC voltage sources. It generates
seven levels, i.e. 0, ±VDC , ±2VDC , and ±3VDC . The
proposed topology has ten voltage vectors with four
zero vectors, three in each positive and negative active
vectors as depicted in Fig. 2. Table 1 presents possible
states.
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Fig. 2: Possible states of grid-connected seven-level inverter.

4. Model Predictive Control
for the Proposed
Seven-Level Inverter

MPC predicts the behavior of variables for a finite
number of possible switching states. It can be applied
in different applications, i.e. AC/DC, AC/AC, and
DC/AC converters. The predictive control scheme for
a grid-connected DC/AC converter is shown in Fig. 3.
The flexibility of the controller makes it a better choice
to control different variables. For grid-connected in-
verter, the control variable is the current injected to
the grid. The control strategy can be summarized as
follow:

• Describe the continuous-time model of the system.

• Finding discrete-time model of the system based
on sampling time.

• Present the voltage vectors which describe the
voltage levels for the presented inverter.

• Measuring injected current to the grid at the in-
stant sample time.

• Use discrete model along with the measured value
of the injected current to predict the behaviour of
the controlled variable, i.e. the injected current
at the next sampling time for all possible voltage
vectors generated by the converter.

• Calculating the cost function for each prediction.

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 254



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 17 | NUMBER: 3 | 2019 | SEPTEMBER

• The voltage vector that minimized the cost func-
tion is selected, and its corresponding switching
combination is applied to the power converter.

The injected current is measured at sampling time
(K), and the optimal switching states are instantly pre-
sented. The switching state which presents minimum
cost function is calculated at sampling time (K + 1)
and applied at sampling time (K).
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Fig. 3: Model predictive control scheme in DC/AC converter.

To control the seven-level inverter’s injected current
(imeas), a discrete-time model for the current control
must be defined. According to the equivalent circuit
shown in Fig. 4, the continuous-time expression for
imeas can be expressed as follows:

Vo = Vgrid + Rf imeas(t) + Lf
dimeas(t)

dt
, (8)

where, Vo and Vgrid are the inverter’s output voltage
and grid voltage, respectively. Rf and Lf are the grid
filter resistance and inductance, respectively. By rear-
ranging Eq. (8):

dimeas(t)

dt
=

Vo − Vgrid −Rf imeas(t)

Lf
. (9)

According to Euler’s method, with a sample time
Ts, the derivative term in Eq. (9) can be expressed as
follows:

dimeas(t)

dt
=

imeas(k + 1)− imeas(k)

Ts
. (10)

Therefore, the discrete-time model for imeas can be
expressed as follows:

imeas(k + 1) =
Ts

Lf
(Vo − Vgrid) + (1− TsRf

Lf
)imeas(k).

(11)

Equation (11) is used to predict the behaviour of
the injected current at the next sampling interval for
all voltage vectors. The required control function here
is controlling the amplitude and frequency of the in-
jected grid current according to the reference value
(iref ), therefore the cost function (g) will be:

g =| iref (k)− imeas(k + 1) | . (12)

Figure 5 depicts the flow chart of the MPC algo-
rithm. As can be seen, the switching states of the

power switches are generated according to the mini-
mum cost function.
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5. Current Control Strategy

Figure 6 shows the current control scheme, which com-
prises grid-connected seven-level inverter under the
MPC technique. Rf and Lf are applied to tie the
inverter to the grid. The closed-loop control is ap-
plied to control the value of imeas. Phase-Locked Loop
(PLL) is used to generate iref according to the grid
voltage. To ensure the effectiveness of the control has
been used, a step change in the amplitude of iref to
provide different amounts in the injected power to the
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grid. Furthermore, a phase shift is applied to the an-
gle generated from PLL in order to change the Power
Factor (PF).

imeas, Vo, and Vgrid are the inputs to the predictive
model, according to Eq. (6) and the output will be the
predictive value of imeas at the next sample time. iref
at the instant sample time and imeas from Eq. (6) are
used to calculate g. With the minimum value of g, the
corresponding switching states for the seven switches
are applied to the power switches.

6. Simulation Results

Simulation of the proposed seven-level inverter con-
trolled by MPC under grid connection for current con-
trol has been validated using MATLAB Simulink. For
analysis, the voltage across the three series-connected
capacitors are assumed constant over the switching
cycle and replaced by three independent DC voltage
sources.
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Fig. 6: Current control scheme for the proposed single-phase
seven-level inverter.

In the simulation, Vgrid is set to 220 V RMS with
fixed a frequency, i.e. 50 Hz. Three cells with seven-
level inverter have three DC sources (V1 = V2 = V3)
with a peak value of 110 V. The value of DC voltage
sources are taken to be greater than

√
2 value of Vgrid

to ensure power transfer to the grid. Grid parameters
are Rf = 0.5 Ω and Lf = 1 mH. The results have been
obtained with Ts = 2 µs.

Figure 7 presents the simulation results of a grid-tied
seven-level inverter. Figure 7(a) shows the inverter out-
put voltage and grid voltage. It can be observed that
the proposed inverter synthesizes seven-level output
voltage including 0 V, ±110 V, ±220 V and ±330 V.
While Fig. 7(b) presents the actual grid current and

grid voltage. As seen, the actual grid current is in
phase with the grid voltage which ensures that unity
PF is effectively achieved.

A Step change in the amplitude of reference grid
current is provided to certify the performance of the
proposed inverter under different amount of injected
power, as shown in Fig. 8. Furthermore, Fig. 8(a) pro-
vides the injected grid and reference currents. Fig-
ure 8(b) shows the step response of the injected grid
current to track its reference current. It can be ob-
served that the injected current effectively tracks its
reference value where its dynamic response is fast.
Consequently, at first, the active power is 624.3 W,
and after a step change, the active power is 831.6 W.
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Fig. 7: Voltage and current waveforms for a grid-connected in-
verter with unity PF.

Besides the capability of tracking the reference value,
another important performance measure is the har-
monic spectrum for the injected current to the grid by
using Fast Fourier Transform (FFT). Fig. 9 presents
FFT analysis for the injected grid current. As seen,
it provides low harmonic content, which significantly
leads to low switching losses and less filter. Also, a ma-
jor concern for a grid-connected MLI is the Total Har-
monic Distortion (THD) of the injected current. It can
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be calculated as follows:

THD =

√∑∞
n=2 i

2
n

i1
. (13)

It must meet the host grid requirements of value less
than the IEEE standard of 5 %. The analysis of THD
in the injected current is found to be 1.23 % up to
250 kHz.
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Fig. 8: The injected grid and reference currents waveforms un-
der a variation on the amplitude of reference current.
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Fig. 9: FFT analysis of the injected current.

In Fig. 10, another change has been implemented
aiming to exchange reactive power with the grid.
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Fig. 10: Voltage and current waveforms for a grid-connected
inverter with 0.94 PF.

A sudden change has been made in the phase shift from
0◦ to 20◦ in the angle between the grid voltage and in-
jected current to ensure a change of PF from unity
to 0.94. Accordingly, the active power is 781.04 W
while the reactive power is 284.12 VAR. Figure 10(a)
presents the inverter output voltage and grid voltage.
One can be noticed that the inverter output voltage
is not affected by the change in PF. Figure 10(b)
presents the actual grid current and grid voltage. As
it is clear, both grid current and grid voltage are in
phase which presents unity PF and then have a change
with 20◦ phase shift. Eventually, in order to confirm
the dynamic performance of the MPC, Fig. 11(a) and
Fig. 11(b) provides the injected grid and reference cur-
rents. As seen the injected current follows reference
value at fast response.

7. Real-Time Validation

The performance of the proposed inverter for grid-tied
application with a Real-Time (RT) setup has been per-
formed and compared with simulation results. RT sim-
ulation is performed using MATLAB/SIMULINK and
dSAPCE-CP1103 control desk, as shown in Fig. 12.
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Fig. 11: The injected grid and reference currents waveforms un-
der a variation on the phase shift of reference current.

Fig. 12: Photograph for RT system.

The RT results are illustrated in Fig. 13 with a fixed
sampling time of 2 µs as used in the simulation.

The inverter output voltage and the grid voltage are
displayed in Fig. 13(a). As can be seen, the inverter
terminal voltage has seven levels, which match the sim-
ulation results. To ensure unity PF, Fig. 13(b) presents
the grid voltage and injected current. The grid voltage
and the injected current, as shown, are well synchro-
nized, and unity PF mode has been achieved success-
fully. The measured and reference grid current is dis-
played in Fig. 13(c). As can be observed, the reference
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Fig. 13: Real-time results of seven-level grid-connected in-
verter.

value is tracked effectively by the measured current,
which provides good performance as observed by sim-
ulation results.

8. Comparative Study of the
Proposed Inverter with
Existing Topologies

To present the effectiveness of the proposed topol-
ogy over other recent topologies, comparisons must be
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Tab. 2: Comparative analysis to obtain symmetrical single-phase seven-level inverter.

MLI type Components
NDC NSW NC ND NT LSratio TSV

[11] 1 12 6 12 31 0.583 20 VDC

[12] 3 7 0 2 12 1.000 19 VDC

[23] 3 12 0 0 15 0. 583 12 VDC

[24] 3 10 0 0 13 0.700 18 VDC

[25] 3 9 0 0 12 0.778 17 VDC

[26] 3 8 0 0 11 0.875 12 VDC

[27] 3 8 0 0 11 0.875 16 VDC

Proposed 3 7 0 0 10 1.000 15 VDC
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Fig. 14: Comparison between different topologies and proposed
inverter.

made. The main aim of presenting any topology is the
increasing the number of output voltage levels while
using as lower number of components as possible, in
addition, total standing voltage of the presented topol-
ogy. Therefore, several comparisons have been made

in this section. First, Tab. 2 presents a comparison
between different topologies with the proposed topol-
ogy for symmetrical seven-level output, which can be
obtained from its structure. The comparison is made
under the following parameters; NDC , NSW , number
of clamping capacitors (NC), number of diodes (ND),
and total number of components (NT ). In addition, the
parameter number of level to power switch ratio (LS
ratio) is also calculated. As shown from Tab. 2, the
proposed inverter provides less number of components
compared with other topologies for the same number
of levels.

In modular topologies, MLI can generate higher lev-
els with the same subunits. In the proposed topolo-
gies, subunit contains a cell which has one DC volt-
age source along with one power switch. Therefore,
Fig. 14 presents comparisons with modular topologies
based on NLEV EL. Fig. 14(a) shows a comparison
between NSW and NLEV EL for different topologies.
As shown, the proposed inverter provides less number
of NSW compared with other topologies for the same
number of levels. Fig. 14(b) presents the LS ratio ver-
susNLEV EL. As presented, the proposed topology pro-
vides the higher value of LS ratio, which presents fewer
power switches for higher levels, in addition, fewer con-
duction losses compared with other topologies. Finally,
Fig. 14(c) provides TSV with the change in the num-
ber of levels. As is obvious, the TSV in the proposed
inverter is higher than some MLI such as presented
in [23] and [26]. Therefore, it limits the application
of the proposed inverter for high voltage applications,
but it still has merits in comparison with the presented
topologies of higher LS ratio in addition, lower NSW .

9. Conclusion

This paper presented a new single-phase DC/AC mul-
tilevel inverter with a low number of components for
the grid-tied application. Seven-level inverter was pre-
sented, which has seven power switches with three iden-
tical DC power supplies. The injected current to the
grid was controlled using model predictive control. In
this paper, the seven-level inverter tied to the grid with
THD at 1.23 %. The results showed a fast response in

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 259



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 17 | NUMBER: 3 | 2019 | SEPTEMBER

controlling the injected current during a step change in
the injected grid current in its amplitude rather than
its phase shift from the grid voltage. The inverter had
been validated using computer software and verified
using real-time by dSPACE-1103. It was cleared that
the real-time results match the simulation results.
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