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Abstract. The paper presents histogram-based ini-
tialzation of Fuzzy C Means (FCM) clustering algo-
rithm for remote sensing image analysis. The draw-
back of well known FCM clustering is sensitive to the
choice of initial cluster centers. In order to overcome
this drawback, the proposed algorithm, first, determines
the optimal initial cluster centers by maximizing the
histogram-based weight function. By using these ini-
tial cluster centers, the given image is segmented us-
ing fuzzy clustering. The major contribution of the
proposed method is the automatic initialization of the
cluster centers and hence, the clustering performance
is enhanced. Also, it is empirically free of experi-
mentally set parameters. Experiments are performed
on remote sensing images and cluster validity in-
dices Davies-Bouldin, Partition index, Xie-Beni, Par-
tition Coefficient and Partition Entropy are computed
and compared with prominent methods such as FCM,
K-Means, and automatic histogram based FCM. The
experimental outcomes show that the proposed method
is competent for remote sensing image segmentation.
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1. Introduction

Remote sensing images are used to extract land cover
information which is useful for many applications
based on Geographical Information System (GIS),
such as creation & update of maps, infrastructure
development, disaster planning, and military oper-
ations. In order to extract land cover information,

segmentation plays a crucial role in image analysis and
understanding. Several clustering algorithms such as
ISODATA [1], K-Means [2], Expectation-
Maximization [3], K-Nearest Neighbor [4], FCM [5]
and their variants have been proposed for image
segmentation.

Clustering is a process to label a set of given observed
input data vectors or image pixels such that samples
of the same label are homogeneous and different from
the samples of the other labels. There are four broad
categories of clustering methods [6]:

• hierarchical,

• based on graph theory,

• decomposition of a density function,

• minimization of an objective function.

In this paper, we focus on the clustering methods using
the minimization of an objective function, which can
be further divided into two main clustering strategies:

• hard clustering scheme,

• soft or fuzzy clustering scheme.

The hard clustering methods classify each data point
or pixel to one of the clusters, therefore, the results are
often very crispy. However, this crisp clustering causes
some difficulties in remote sensing images, which have
limited spatial resolution, poor contrast, the complex-
ity of the ground surface and diversity of disturbance or
a spectral variation [7]. On the other side, soft cluster-
ing methods are based on Fuzzy set theory [8] and [9]
and invoke the concept of partial membership func-
tion, which has been widely used in data clustering
and image segmentation. The FCM [11] is one of the
most popular and successful algorithms used for image
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segmentation because it has robust characteristics for
ambiguity and can retain much more information than
hard segmentation methods [12].

The FCM clustering was originally developed by
Dunn [10] and further improved by Bezdek [11]. In
conventional FCM, the initial cluster centers are ran-
domly selected which may affect the clustering per-
formance. In order to enhance the accuracy of fuzzy
partitioning, different kinds of improvement have been
contributed by many researchers. Kim et al. [13] pro-
posed a method to initialize the cluster centers of FCM
clustering by using the dominant colors but its cluster-
ing efficiency is degraded in images which consist of
clutter scenario. Tian et al. [14] present an automatic
K-means initialization algorithm based on histogram
analysis for medical CT images. The initialization of
K-means clustering is accurate and closer to ground
truth. In addition, Zhong et al. [15] proposed an au-
tomatic fuzzy clustering method based on Adaptive
Multi-Objective Differential Evolution (AFCMDE) al-
gorithm having two stages. The optimization stage is
used to find the optimal number of clusters and clas-
sification stage initializes the cluster centers and clas-
sifies the image by using FCM clustering. In another
study, Shang et al. [16] proposed a Clone Kernel Spatial
FCM (CKS_FCM) algorithm. In that work, the clus-
ter centers are initialized by using an immune clone al-
gorithm and also enhanced the robustness to the noise
by incorporating spatial information. In 2014, Ghaf-
farian [17] proposed an Automatic Histogram based
Fuzzy C Means (AHFCM) clustering for remote sens-
ing imagery. The number of clusters and their initial
values have been determined by slope analysis on the
histogram and band fusion principle. However, the
number of clusters is controlled by two threshold pa-
rameters and there is no defined way to determine their
value, therefore, the prediction of the threshold value
can be done by experience or hit and trial error exper-
iments.

The common drawback of the FCM algorithm is the
selection of initial cluster centers. In remote sens-
ing images, a lot of noise and some very similar ob-
jects exist; therefore the selection of initial cluster cen-
ters controls the clustering outcome and the conver-
gence speed of the algorithm. To address the above-
mentioned drawback, the paper proposed a novel and
robust histogram-based initialization of FCM cluster-
ing algorithm for remote sensing imagery. The pro-
posed algorithm first preprocesses the input image and
predicts the initial cluster centers by iterative maxi-
mizing the weight parameter of the brightness values.
Finally, the image is segmented by using FCM cluster-
ing and above-calculated initial cluster centers.

The paper is organized as follows: Sec. 2. de-
scribes the proposed method; Sec. 3. discusses the

cluster validation indexes and results obtained from the
algorithm and Sec. 4. concludes the paper.

2. Proposed Method

The flow chart of the proposed method is shown in
Fig. 1. It comprises preprocessing, automatic initial-
ization of cluster centers and clustering using an FCM
algorithm.

Input image

Extract green band

Histogram equalization

Compute histogram 

Cluster center (c=1)= 
of histogram

Compute weight parameter 
for each brightness value

Cluster center ( c= c + 1 )= Bp

for which max (weight 
parameter)

Stop condition
(c < C)

Clustered using Fuzzy
 Means algorithm

Segmented image

Preprocessing step

Cluster centers initialization

No

Yes

mode

C

Fig. 1: Flowchart of proposed method.
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2.1. Preprocessing

Initially, the green image band (shown in Fig. 2(b))
is extracted from the given input visible color image
(Fig. 2(a)) because it contains more information due
to the Rayleigh effect [18]. In order to increase the
contrast and dynamic range, the histogram equaliza-
tion (Fig. 2(d)) is performed.

2.2. Initialization of the Cluster
Centers

In FCM, the process of the cluster centers initializa-
tion strongly determines the convergence speed and
segmentation accuracy of the algorithm. The initial-
ization of cluster centers in conventional FCM is ran-
domly done, which will affect the convergences on local
optima. In the proposed method, the optimum initial-
ization of cluster centers is computed as follows:

The preprocessed image consists of brightness val-
ues Bp, p = 0, 1, 2, . . . ,M and their frequency of oc-
currence is fp. The brightness value whose frequency
of occurrence is maximum in a preprocessed image is
assumed as a first initial cluster center:

Vc=1 = Bp for which fp = max(fp), (1)

where c is the number of cluster centers computed till
a given iteration, V is the initial cluster center and M
is the number of distinct brightness values for a given
image. Further, to find the next initial cluster center
value, the weight parameter (Wp) is computed for each
brightness value. The weight parameter is the function
of the difference between the brightness value and the
previously computed cluster centers and their occur-
rence rate. In the proposed initialization method, we
have considered the occurrence frequency of brightness
value as well as the distribution of the initial cluster
centers. Therefore, it efficiently converges to the opti-
mal cluster centers. Hence, the weight parameter (Wp)
is computed as:

Wp = fp

c∏
k=1

‖Bp − Vk‖ . (2)

The brightness value, for which the above-computed
weight parameter is maximized, has been considered
as the next initial cluster center:

Vc+1 = Bp for which (maxWp) ∧ (Bp 6= Vk;k=1:c),
p = 0 :M − 1.

(3)
If the number of already computed cluster centers (c)
is less than that of the user-specified number of clus-
ter centers (C), the algorithm iteratively computes the
new cluster center using Eq. (2) and Eq. (3). Hence,
by using the above procedure, the initial cluster centers
have been determined.

2.3. Automatically Initialized FCM
Clustering

Finally, the input preprocessed green image band is
clustered by using the above-computed initial cluster
centers and FCM clustering [11]. The final outcome,
i.e. segmented image, is shown in Fig. 2(f) and the
key steps of the proposed algorithm are summarized in
Alg. 1.

Algorithm 1 Proposed Fuzzy based Algorithm.
1: Preprocessing : Extract green band from the input

image and perform histogram equalization.
2: Input : Initialize the number of clusters (C),

weighting exponent (m), termination condition (ε)
and the loop counter (lc = 0).

3: Automatic Initialization of cluster centers: The
initial cluster centers are automatically computed
using Eq. (1), Eq. (2) and Eq. (3) and correspond-
ing initial membership matrixU = {uki}CXN com-
puted as:

uki =


1

C∑
j=1

‖xi − Vk‖2

‖xi − Vj‖2



1

m− 1

, (4)

where N is the number of data points or pixels in
a given image.

4: Update cluster centers: The cluster centers are up-
dated as:

vk =

N∑
i=1

umkixi

N∑
i=1

umki

. (5)

5: Update membership matrix : The membership ma-
trix is updated by replacing V by v (above com-
puted cluster centers in step 4) in Eq. (4).

6: Termination condition: Iterations will get stop
when max

k∈(1,c)

∣∣vlck − vlc−1k

∣∣ < ε. Else lc = lc+ 1 and

iterate through step 4.
7: Assign the final label to each pixel : When the

algorithm converges, the labeling (Li) of each
pixel is done using final membership matrix
U = {uki}CXN as:

Li = max
k=(1,2,...,C)

uki. (6)
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(a) Input image. (b) Green Band.
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(c) Histogram of green band.

(d) Histogram equalization.
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(e) Histogram of Histogram equalization. (f) Segmented image.

Fig. 2: Overview of the proposed method.

DB =
1

C

C∑
j=1

max
k,j 6=k

1

Nj

∑
x∈cj

‖ x− vj ‖

+
1

Nk

(∑
x∈ck

‖ x− vk ‖

)
‖ vj − vk ‖

. (7)

3. Experimental Results

In this section, the performance of the proposed
method is examined and compared with three algo-
rithms, i.e. Standard FCM [11], K-Means [2], and
AHFCM [19]. All experiments are implemented on the
Intel Pentium CPU at 2.10 GHz, 4.0 GB internal RAM
and Windows 7 computer using MATLAB 2018.

3.1. Evaluation Indexes

The proposed algorithm is quantitatively evaluated us-
ing Davies-Bouldin (DB) [19], Partition (SC) index
[20], Xie-Beni (XB) index [21], Partition Coefficient
(PC) [22] and Partition Entropy (PE) [22]. The in-
dexes are defined as:

1) Davies-Bouldin (DB) Index:

DB index is defined as the ratio of the sum of within-
cluster scatter to the between-cluster separation for C
clusters as shown in Eq. (7).

2) Partition (SC) Index:

SC is defined as the sum of the ratio of cluster com-
pactness to their separation. In other words, it is the
sum of the individual cluster validities and it measures
the normalized division using the fuzzy cardinality of
each cluster:

SC =

N∑
i=1

C∑
j=1

u2ij‖ xi − vj ‖
2

C∑
j=1

nj

C∑
k=1

‖ vk − vj ‖2
. (8)
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Fig. 3: First row (a–d): input image, second row (e–h): FCM outcome, third row (i–l): K-means outcome, fourth row (m–p):
AHFCM outcomes and fifth row (q–t): proposed method outcome on the respective images.
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Tab. 1: Comparison of cluster validity indices SC, XB, DB, PC and PE for FCM, K-Means, AHFCM and the Proposed method.

Image Cluster # Method Cluster Validity Indices
SC XB DB PC PE

Image #1 6

FCM 0.0121 0.0842 0.5062 0.7354 0.5359
K-Means 0.5233
AHFCM 0.0278 0.1675 0.7484 0.6277 0.7728
Proposed 0.0110 0.0549 0.4355 0.7480 0.5126

Image #2 4

FCM 0.0363 0.0835 0.5781 0.7592 0.4573
K-Means 0.5676
AHFCM 0.0500 0.1122 0.6737 0.7094 0.5520
Proposed 0.0262 0.0576 0.4771 0.7757 0.4310

Image #3 5

FCM 0.0221 0.1374 0.5953 0.7305 0.5237
K-Means 0.5700
AHFCM 0.0303 0.1944 0.7443 0.6682 0.6475
Proposed 0.0164 0.0579 0.3960 0.7581 0.4822

Image #4 7

FCM 0.0091 0.0782 0.5276 0.7228 0.5734
K-Means 0.5073
AHFCM 0.0141 0.1146 0.6932 0.6309 0.7674
Proposed 0.0081 0.0560 0.4060 0.7330 0.5527

3) Xie-Beni (XB) Index:

XB is defined as the ratio of the total variation and the
minimum distance between clusters:

XB =

N∑
i=1

C∑
j=1

u2ij‖ xi − vj ‖
2

nminj,k ‖ vj − vk ‖2
. (9)

4) Partition Coefficient (PC) Index:

PC measures the amount of overlap between clusters,
and is defined as:

PC =
1

N

N∑
i=1

C∑
j=1

u2ij . (10)

5) Partition Entropy (PE) Index:

PE measures the fuzziness of clusters:

PE =
−1
N

N∑
i=1

C∑
j=1

log(uij), (11)

where C is the number of clusters, N is the number of
data points or pixels, uij is the membership degree of
ith pixel for jth cluster, x is the data point or image
pixel value, v is the cluster center, Nj & Nk is the
number of pixels in jth & kth cluster respectively and
nj is the fuzzy cardinality of the cluster and equal to
N∑
i=1

uij .

For better clustering outcomes, the minimum value
of DB, SC, and XB are preferred. Also, when the value
of PE approaches zero and the value of PC approaches
one, it results in better partitioning. In all the experi-
ments, the exponentm is taken as 2, maximum number
of iterations 100, and parameter ε as 10−4.

3.2. Results and Discussion

The proposed clustering algorithm has been evaluated
on a dataset provided by NWPU-RESISC45 [23]. It
has been provided by Northwestern Polytechnical Uni-
versity (NWPU) and avails the benchmark for Remote
Sensing Image Scene Classification. This dataset con-
tains 31 500 images covering 45 scene classes with
700 images in each class. The size of each image is
256 × 256 pixels in the Red-Green-Blue (RGB) color
space, a spatial resolution varies from about 30 m to
0.2 m per pixel and images are obtained from Google
Earth.

A large number of experiments have been performed
to evaluate the proposed clustering algorithm. The test
images on which we got peculiar outcomes are shown
in Fig. 3, where the first row (Fig. 3(a), Fig. 3(b),
Fig. 3(c) and Fig. 3(d)) shows the input images, the
second row (Fig. 3(e), Fig. 3(f), Fig. 3(g) and Fig. 3(h))
shows the segmented outcome of FCM and the third
row (Fig. 3(i), Fig. 3(j), Fig. 3(k) and Fig. 3(l)) shows
the results extracted by K-Means. Then, the fourth
row shows the results of AHFCM and the fifth row
shows the results of the proposed method. The perfor-
mance of the proposed algorithm is examined for the
different number of clusters on the diverse domain im-
ages. As shown in Fig. 3, the first column compares
the clustering outcomes on cloudy image clustered in
six classes. Similarly, the second column evaluates the
proposed method for dense residential image clustered
in four classes. Columns third and fourth evaluate the
algorithm on lake image clustered in five classes and
on mountain image clustered in seven classes respec-
tively. The analysis of results reveals that the more
compact and homogeneous clusters can be obtained by
using the proposed method in comparison to earlier
counterparts.
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In Tab. 1, the above-defined cluster validity param-
eters SC, XB, DB, PC, PE are computed for standard
FCM, K-Means, AHFCM, and the proposed cluster-
ing algorithm for images #1 to #4 respectively. As
seen from Tab. 1, for each image, all indices show that
the proposed clustering algorithm outperforms over the
randomly initialized conventional FCM, K-Means, and
the automatically initialized AHFCM algorithms. Tak-
ing the DB index as an example, the proposed algo-
rithm gains the average improvement by 12 %, 11 %,
and 28 % over the conventional FCM, K-means and
AHFCM algorithms.

3.3. Computational Complexity

The time required for the proposed method and
AHFCM to cluster the test images is shown in Fig. 4.
The figure shows that the elapsed time for the pro-
posed method is comparatively less than that of
AHFCM. This shows that the initialization of the clus-
ter center controls the number of iterations and hence
the elapsed time required for clustering.

0

5

10

15

20

25

30

35

AHFCM
Proposed

El
ap

se
d

 �
m

e 
(s

)

Image #1 Image #2 Image #3 Image #4 

Fig. 4: Elapsed time of the proposed and AHFCM method for
the images #1, #2, #3 and #4.

4. Conclusion

In this study, we proposed a histogram-based initial-
ization of FCM clustering algorithm for remote sens-
ing images. The green band of a given image is en-
hanced by the histogram equalization process. Fur-
ther, the initial cluster centers are automatically com-
puted by maximizing the weight parameter. Experi-
ments on NWPU-RESISC45 [23] dataset are performed
to demonstrate the effectiveness of the proposed algo-
rithm. The qualitative, as well as quantitative assess-
ment, show that the proposed method performs bet-
ter than the comparable clustering algorithms FCM,
K-Means, and AHFCM. The experimental analysis
shows that the preprocessing done at the beginning
and the automatic initialization of FCM clustering play
a significant role in a successful clustering process.

In the future, further research will be conducted on
automatic determination of the number of clusters.
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