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Abstract. In this paper, we consider the problem
of robust adaptive efficient estimating a periodic sig-
nal observed in the transmission channel with the
dependent noise defined by non-Gaussian Ornstein-
Uhlenbeck processes with unknown correlation proper-
ties. Adaptive model selection procedures, based on
the shrinkage weighted least squares estimates, are pro-
posed. The comparison between shrinkage and least
squares methods is studied and the advantages of the
shrinkage methods are analyzed. Estimation properties
for proposed statistical algorithms are studied on the
basis of the robust mean square accuracy defined as the
maximum mean square estimation error over all pos-
sible values of unknown noise parameters. Sharp ora-
cle inequalities for the robust risks have been obtained.
The robust efficiency of the model selection procedure
has been established.
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1. Introduction

In this paper, we consider the estimation problem for
the 1-periodic signal S(t) on the basis of observations
(yt)0≤t≤n given by the stochastic differential equation:

dyt = S(t)dt+ dξt, 0 ≤ t ≤ n, (1)

where n is the duration of observation and (ξt)0≤t≤n
is unobserved colour noise. Note that if (ξt)0≤t≤n is
Brownian motion, then we obtain the well-known "sig-
nal + white noise" model which is very popular in sta-
tistical radio-physics (see, for example, [1], [2] and [3]).
In this paper, we assume that the useful signal S is
distorted by the impulse flow described by the non-
Gaussian Ornstein-Uhlenbeck processes, which allows
studying the signal estimation problems with depen-
dent pulse noises, i.e. we assume that the noise process
(ξt)0≤t≤n obeys the equation:

dξt = aξtdt+ dut, (2)
ut = ń1wt + ń2zt and zt = x ∗ (µ− µ̃)t ,

where a, ń1 and ń2 are some unknown constants,
(wt)t≥0 is the standard Brownian motion, µ(ds dx)
is the jump measure with deterministic compensator
µ̃ (ds dx) = dsΠ (dx), Π(·) is the Levy measure, i.e.
some positive measure on R∗ = R\ {0}, such that
Π
(
x2
)

= 1 and Π
(
x6
)
< ∞. Here we use the no-

tation Π (|x|m) =
∫
R∗ |y|mΠ (dy). Note that the Levy
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measure Π (R∗) could be equal to +∞. We use ∗ for the
stochastic integrals with respect to random measures
(see [4], Chapters 2 and 3), i.e.:

x ∗ (µ− µ̃)t =

t∫
0

∫
R∗

y (µ− µ̃) (ds, dy) . (3)

It should be noted that if a = 0, then we obtain the
Levy regression model considered in [5]. In the case
when Π (·) = 0 we obtain the well-known Gaussian
Ornstein-Uhlenbeck regression model introduced in [6]
and [7]. The model in the Eq. (1) and Eq. (2) in which
the jump process (zt)t≥0 is defined by the compound
Poisson process was studied in [8] and [9]. However,
the compound Poisson processes can describe only the
large noise impulses of small fixed frequency, but the
telecommunication and location systems may have the
impulse noises with any frequency without any condi-
tion. We note that in the papers [8] and [9] the pro-
posed statistical procedures are based on the classical
weighted least squares estimators.

The main goal of this paper is to develop a new
improved adaptive robust efficient signal estimation
methods for the non-Gaussian Ornstein-Uhlenbeck
noise (ξt)0≤t≤n based on the general Levy processes
with unknown distribution Q. We assume that this
distribution belongs to the class Q∗n defined as a fam-
ily of all these distributions for which the parameters
−a∗ ≤ a < 0, ń1 ≥ ξ∗ and ń2

1 + ń2
2 ≤ ξ∗, where a∗,

ξ∗ and ξ∗ are some fixed positive bounds. The quality
of an estimate Ŝn of the unknown signal S, i.e. some
function of (yt)0≤t≤n, will be measured with the robust
quadratic risk:

R∗
(
Ŝn, S

)
= sup
Q∈Q∗

n

RQ

(
Ŝn, S

)
, (4)

where

RQ

(
Ŝn, S

)
:= EQ,S

∥∥∥Ŝn − S∥∥∥2

and (5)

‖S‖2 =

1∫
0

S2(t)dt.

Here EQ,S is the expectation with respect to the distri-
bution PQ,S of the process in the Eq. (1) with a fixed
distribution Q of the noise (ξt)0≤t≤n and a given func-
tion S.

2. Shrinkage Estimation
Methods

Let (φj)j≥1 be a trigonometric basis in L2 [0, 1]. We
extend these functions by the periodic way on R i.e.

φj(t) = φj(t + 1) for any t ∈ R. For estimating the
unknown function S in the Eq. (1), we consider its
Fourier expansion:

S(t) =

∞∑
j=1

θjφj(t)

and (6)

θj = (S, φj) =

1∫
0

S(t)φj(t)dt.

The Fourier coefficients θj can be estimated as:

θ̂j,n =
1

n

n∫
0

φj(t)dyt. (7)

We define a class of weighted least squares estimates
for S(t) as:

Ŝλ =

n∑
j=1

λ(j)θ̂j,nφj , (8)

where the weights λ ∈ Rn belong to some finite set Λ
from [0, 1]

n.

Now, for the first d ≤ n Fourier coefficients in
Eq. (6), we use the improved estimation method pro-
posed for parametric models in [10] and [11]. To this
end we set θ̃n =

(
θ̂j,n

)
1≤j≤d

. In the sequel, we will use

the norm |x|2d =
d∑
j=1

x2
j for any vector x = (xj)1≤j≤d

from Rn. Now we define the shrinkage estimators as:

θ∗j,n = (1− g (j)) θ̂j,n, (9)

where g(j) = cn
|θ̃n|

d

1{1≤j≤d}, 1A is the indicator of

the set A and cn is some known parameter such that
cn ≈ d

n as n→∞. Now we introduce a class of shrink-
age weighted least squares estimates for S as:

S∗λ =

n∑
j=1

λ(j)θ∗j,nφj . (10)

We denote the difference of quadratic risks of the esti-
mates in Eq. (10) and Eq. (8) as ∆Q(S) := RQ (S∗λ, S)−
RQ

(
Ŝλ, S

)
. Now for this deviation, we obtain the fol-

lowing result.

Theorem 1 Assume that for any vector λ ∈ Λ there
exists some fixed integer d = d(λ) such that their first
d components equal to one. Then for any n ≥ 1 and
r > 0:

sup
Q∈Qn

sup
‖S‖≤r

∆Q(S) < −c2n. (11)

The inequality in Eq. (11) means that non-
asymptotically, i.e. for any n ≥ 1 the estimate in the
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Eq. (10) outperforms in mean square accuracy the es-
timate in the Eq. (8). Moreover, as we will see below,
ncn → ∞ as n → ∞. This means that the improve-
ment effect in the nonparametric case is more signifi-
cant than for parametric regression [11].

3. Model Selection Procedure

This Section gives the construction of a model selection
procedure for estimating a function S in the Eq. (1) on
the basis of improved weighted least squares estimates
and states the sharp oracle inequality for the robust
risk of the proposed procedure.

The model selection procedure for the unknown func-
tion S in the Eq. (1) will be constructed on the basis of
a family of estimates (S∗λ)λ∈Λ. The performance of any
estimate S∗λ will be measured by the empirical squared
error:

Errn(λ) = ‖S∗λ − S‖
2
. (12)

In order to obtain a good estimate, we have to write
a rule to choose a weight vector λ ∈ Λ in the Eq. (6).
It is obvious that the best approach is to minimize the
empirical squared error with respect to λ. Making use
the estimate definition in the Eq. (6) and the Fourier
transformation of S implies:

Errn (λ) =

n∑
j=1

λ2(j)
(
θ∗j,n
)2 − 2

n∑
j=1

λ(j)θ∗j,nθj +

n∑
j=1

θ2
j .

(13)
Since the Fourier coefficients (θj)j≥1 are unknown, the
weight coefficients (λj)j≥1 cannot be found by mini-
mizing this quantity. To circumvent this difficulty one
needs to replace the terms θ∗j,nθj by their estimators
θ̃j,n. We set:

θ̃j,n = θ∗j,nθ̂j,n −
σ̂n
n
, (14)

where σ̂n is the estimate for the noise variance of
σQ = EQξ

2
j,n which we choose in the following form:

σ̂n =

n∑
j=[
√
n]+1

t̂2j,n and t̂j,n =
1

n

n∫
0

φj(t)dyt. (15)

For this change in the empirical squared error, one has
to pay some penalty. Thus, one comes to the cost func-
tion of the form:

Jn(λ) =

n∑
j=1

λ2(j)
(
θ∗j,n
)2 − 2

n∑
j=1

λ(j)θ̃j,n + δP̂n(λ),

(16)
where δ is some positive constant and P̂n(λ) is the
penalty term defined as:

P̂n(λ) =
σ̂n |λ|2n
n

. (17)

Substituting the weight coefficients, minimizing the
cost function:

λ∗ = argmin
λ∈Λ

Jn(λ) (18)

in the Eq. (10) leads to the improved model selection
procedure:

S∗ = S∗λ∗ . (19)

It will be noted that λ∗ exists because Λ is a finite set.
If the minimizing sequence in the Eq. (18) λ∗ is not
unique, one can take any minimizer. In the case, when
the value of σQ is known, one can take σ̂n = σQ and
Pn(λ) = σQ |λ|2n n−1.

Theorem 2 For any n ≥ 2 and 0 < δ < 1
2 , the robust

risks defined in the Eq. (4) of estimate in the Eq. (19)
for continuously differentiable function S satisfies the
oracle inequality:

R∗ (S∗λ∗ , S) ≤ 1 + 5δ

1− δ
min
λ∈Λ

R∗ (S∗λ, S) +
B∗n
nδ

, (20)

where the term B∗n is independent of S and such that
B∗nn

−ε → 0 as n→∞ for any ε > 0.

The inequality in Eq. (20) allows us to establish that
the procedure in the Eq. (19) is optimal in the oracle
inequalities sense. This property enables to provide
asymptotic efficiency in the adaptive setting, i.e. when
information about the signal regularity is unknown.

4. Asymptotic Efficiency

In order to study the asymptotic efficiency, we define
the following functional Sobolev ball:

Wk,r =

{
f ∈ Ckp [0, 1] :

k∑
i=0

∥∥∥f (i)
∥∥∥2

≤ r

}
, (21)

where r > 0 and k ≥ 1 are some unknown parameters,
Ckp [0, 1] is the space of k times differentiable 1-periodic
functions such that for any 0 ≤ i ≤ k − 1 : f (i)(0) =
f (i)(1). In order to formulate our asymptotic results
we set:

vn =
n

ξ∗
, lk(r) = ((2k + 1) r)

1
(2k+1)

(
k

π (k + 1)

) 2k
(2k+1)

(22)
and we denote by Σn of all estimates Ŝn of S mea-
surable with respect to the σ-algebra generated by the
process in the Eq. (1).

Theorem 3 The robust risk defined in the Eq. (4) ad-
mits the following asymptotic lower bound:

lim inf
n→∞

inf
Ŝn∈Σn

v2k/(2k+1)
n sup

S∈Wk,r

R∗
(
Ŝn, S

)
≥ lk (r) .

(23)
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This lower bound is sharp in the following sense.

Theorem 4 The robust risk defined in the Eq. (4) for
the estimating procedure in the Eq. (19) has the follow-
ing asymptotic upper bound:

lim sup
n→∞

v2k/(2k+1)
n sup

S∈Wk,r

R∗ (S∗, S) ≤ lk (r) . (24)

Theorem 3 and Thm. 4 imply that the model selection
procedure S∗ is efficient and the parameter lk (r) de-
fined in the Eq. (22) is the Pinsker constant in this case
[3].

5. Monte Carlo Simulations

In this section, we report the results of a Monte Carlo
experiment to assess the performance of the proposed
model selection procedure in the Eq. (19). In the
Eq. (1) we choose 1-periodic function S which is defined
as S(t) = t sin(2πt) + t2(1− t) cos(2πt), for 0 ≤ t ≤ 1.
We simulate the Eq. (1) with the noise process defined
as:

dξt = −ξtdt+ 0.5dwt + 0.5dzt, (25)

where zt =
Nt∑
j=1

Yj , Nt is a Poisson process with the

intensity λ = 1 and (Yj)j≥1 is i.i.d. Gaussian (0, 1).
We use the model selection procedure defined in the
Eq. (19) with the weights proposed in [8]: k∗ =
100 +

√
lnn, ε = 1

lnn and m =
[

1
ε2

]
. We used the

cost function with δ = (3 + lnn)
−2. We define the em-

pirical risk as R̄
(
S̃, S

)
= 1

p

p∑
j=1

Ê
(
S̃n (tj)− S (tj)

)2

and Ê
(
S̃n (·)− S (·)

)2

= 1
N

N∑
l=1

(
S̃ln (·)− S (·)

)2

with

the frequency of observations p = 100001 and numbers
of replications N = 10000.

Table 1 gives the values for the sample risks for dif-
ferent numbers of observation period n.

Tab. 1: Empirical risks.

n R̄
(
S̃, S

)
R̄ (S∗, S) R̄

(
S̃, S

)
/R̄ (S∗, S)

100 0.0457 0.0289 1.6
200 0.0216 0.0089 2.4
500 0.0133 0.0021 6.3
1000 0.098 0.0011 8.9

6. Conclusion

In this paper, we considered the problem of nonpara-
metric signal processing on the basis of the observa-
tions with the dependent non-Gaussian impulse noises.

We developed adaptive efficient statistical model selec-
tion procedures based on the shrinkage methods and we
have shown that the shrinkage estimation methods con-
siderably improve the non-asymptotic estimation accu-
racy. The obtained theoretical results are confirmed by
the numerical simulation. It turns out that numerically
the improvement effect may increase 10 times. Next,
for the developed statistical methods we obtained the
adaptive efficiency property, which means that we pro-
vide the best mean squares accuracy without using the
smoothness information about the form of unknown
signal. Moreover, in this paper, we studied the accu-
racy properties for the proposed methods on the basis
of the robust approach, i.e. uniformly over all possible
unknown noise distributions. This allows us to syn-
thesize the statistical algorithms possessing the high
noise immunity properties. The results (their satisfac-
tory concordance with the corresponding experimental
data) can be used for the estimation of the signals.
Such problems are of a great importance in the fields
of radio-and-hydroacoustic communications and posi-
tioning, radio-and-hydrolocation, etc. (see [12] and ref-
erences therein).
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