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Abstract. This study is related to SLAM, also known
simultaneous localization and mapping which is highly
important and an indispensable issue for autonomous
mobile robots. Both an environment mapping and an
agent’s localization are provided with SLAM systems.
However, while performing SLAM for an unknown en-
vironment, the robot is navigated by three different
ways: a user guidance, random movements on an ex-
ploration mode or exploration algorithms. A user guid-
ance or random exploration methods have some draw-
backs that a user may not be able to observe the agent
or random process may take a long time. In order to
answer these problems, it is searched for a new and au-
tonomous exploration algorithm for SLAM systems. In
this manner, a new kind of left-orientated autonomous
exploration algorithm for SLAM systems has been im-
proved. To show the algorithm effectiveness, a factory-
like environment is made up on the ROS (Robot Op-
erating System) platform and navigation of the agent
is observed. The result of the study demonstrates that
it is possible to perform SLAM autonomously in any
similar environment without the need of the user inter-
ference.
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1. Introduction

It is a well-known fact that robotic applications have
been increasing day after day and robots have per-
formed an assistance to human from health to indus-

trial applications [8], [12], [14], [18] and [28]. In order
for a robot to be able to fulfil a task, it has to know
its location and what the world looks like around it.
It is agreed that the problem of where the robot is
seen as a localization problem. Moreover, the prob-
lem of constructing a map of the environment is spec-
ified as a mapping one [3] and [25]. Despite the fact
that these two issues tackle separately, it may be im-
possible to give the robot neither location nor map in
some cases. Therefore, it is necessary to build a map of
an environment while simultaneously localize the robot
within this map for such situations. When the litera-
ture is scrutinized, it can be seen that this problem
is called as simultaneous localization and mapping or
acronym of it SLAM [6]. SLAM deals with a construc-
tion of a map of an environment in which concurrently
localize itself within it. Due to the fact that it could
gain an autonomy to the robot, SLAM has been seen a
‘holy grail’ [6] and, it is an important milestone for the
mobile robotic applications. From this point of view,
a mobile robot is able to have an information about
where it is or where to go by courtesy of SLAM.

Many algorithms have been presented about SLAM
from the 2-D maps and metrics maps to 3D or topologic
ones, from the filter based approaches to the vision-
based ones [1], [11], [19], [28] and [30]. According to
the related previous studies, a guidance of robots in an
unknown environment could be done in three different
ways:

• The first one is a user navigation and it can be
thought an ideal and the most efficient solution
due to the fact that it is based on human obser-
vation. By way of this method, the robot can be
navigated to an unmapped area. One of the lim-
itations of this method is that it is not explicit
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what happens if the user is not able to observe
the robot or the exploration area.

• The second guidance method is the random ex-
ploration method. The robot is allowed to run
in an exploration mode so that the robot might
explore the area moving random orientation and
movement. A critical weakness of this method,
however, is that it takes a long time to discover all
over the area [14], [21], [22], [24] and [29].

• The third method is the special algorithms for
autonomous navigation and exploration. When
these types of algorithms are combined with
SLAM, it is usually called active SLAM approach
which ensures the full autonomy for the mobile
robot. These approaches generally are benefited
from occupancy grid maps. The environment is
split into grids and the robot is navigated to the
unexplored regions [13], [24] and [31].

The first two methods suffer from some serious dis-
advantages as mentioned above while the algorithms
under the third section generally count on the laser
measurements. In this context, the presented study
can be discussed under the third class of active SLAM
algorithms. Our enhanced approach differs from the
existed algorithms because it is image-based instead of
laser scanning.

2. Simultaneous Localization
and Mapping (SLAM)

The first serious discussions and analyses of SLAM
have emerged during the late 1980s. The idea of gath-
ering probability and robotics were the heart of the
matter [5] and [23]. There has been notable progress
on the solution of the problem after then implementa-
tion of Bayes based filters such as Kalman Filter (KF)
for linear systems and Extended Kalman Filter (EKF)
for non-linear ones [8], [24] and [26].

SLAM is mathematically described in the form of
probability in which sensor and control data of the
robot are inputs; a map and a pose of the robot are
outputs Eq. (1) [6], [8], [21] and [22]:

P (x0:t,m1:M | Z1:t, u1:t), (1)

where m is a map created with the algorithm and x is
pose information of the robot. These two terms also
stand for global state parameters of SLAM. On the
other hand, z is identified as sensor observations and
u is robot control inputs. At the first stage of EKF-
SLAM, the state is predicted considering the robot pre-
vious state and the control input. At the latter phase,

the prediction has been updated by using sensor obser-
vations.

However, traditional EKF method suffers from the
non-Gaussian noise cases and a big size covariance ma-
trix if the number of landmarks is relatively high [3],
[4] and [6]. Because of some downsides of EKF-SLAM,
new methods have been improved. The most striking
development at this point was the implementation of
Particle Filters (PF) to SLAM problem. However, PF
also suffers from a big size covariance matrix due to
the fact that each particle represents the individual so-
lution. To overcome this problem, the remarkable so-
lution was the implementation of Rao-Blackwellization
decomposition method along with the PF. This method
is also called FastSLAM. By means of this decomposi-
tion, SLAM problem has turned into a classical Monte
Carlo Localization (MCL) of the robots and traditional
EKF mapping Eq. (2) [1], [9], [15], [16] and [21]:

p(x0:t,m1:M | Z1:t, u1:t) =

p(x0:t | Z1:t, u1:t)
M∏

i=1
p(mi | Z1:t, X0:t).

(2)

Assuming to landmark locations independent, localiza-
tion and mapping can be handled separately. Thanks
to this trick, it is computed M times 2 by 2 matrix
instead of tackling with the big size of M by M covari-
ance matrix facing on conventional EKF. With this
development, computation speed of the algorithm has
been notably increased and non-Gaussian distribution
representation of the model has been developed. Con-
sidering from this point of view, each particle has its
belief on the potential solution (map and pose of a
robot). The particles have been updated in every iter-
ation when the environment is observed.

3. Implemented System

A factory-like environment has been made up to
demonstrate the effectiveness of the improved au-
tonomous algorithm. The lines used to separate the
sections from each other are considered to form the
working environment (Fig. 1). A pure line follower
algorithm is highly likely to produce unstable results
considering the robot has to turn when faced rotation
points or the endpoint of the lines. In order to get over
this problem, a left-orientated follower algorithm has
been developed and the movements of the robot have
been provided within this framework.

3.1. Evaluation of Images

The robot takes an image (Fig. 2(a)) of the environ-
ment via a camera mounted on it. With these images,
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Fig. 1: Environment view, robot and tracking lines.

the navigation path of the robot can be determined by
means of image processing algorithms.

The images taken from the camera of the robot are
being processed continuously. During this period, sev-
eral types of images have been produced like HSV and
masked ones (Fig. 2 and Fig. 3). Segmented images
are used to determine the foreground path.

First of all, images are transformed into HSV im-
ages. The aim of this transformation is to provide a
more reliable result on the evaluation of the images
because of the fact that HSV images are more robust
on the change of brightness, shadow effects etc. Other-
wise, the areas covered shadows might be misidentified
(Fig. 3(b)).

After applying HSV transformation to the image, a
novel approach has been thought due to the fact that
the assessing of the whole image both will be difficult
and increase the computational time. To this end, the
image is divided into three sub-regions, x1, x2, x3. x1
and x3 parts are multiplied by 0 to exclude the ir-
relevant regions. Only the region x2 is let alone and
decisions are made based on that region. In this way,
only the region to be tracked are extracted from the
whole image and the robot is manipulated to the true
path. The value of the regions has been calculated by
empirically after examining some trials. For this study,
the values of the parameters have been computed like
x1 = 3 ·h/4, x2 = 20 ∼ 30 (about 1 meter ahead of the
robot), x3 = h− (x1 + x2) (Fig. 4 and Fig. 5) where h
is the height of the image, while w is the width of it.

In addition to this, it is needed to use another
masked image to determine the left orientation. And
therefore, some right part of the original masked im-
age (w − x4) is also covered with zero so that the left
orientation can be decided by means of the difference
on image moments (Fig. 5 and Subsec. 3.3. ).

3.2. The Robot, Sensor and
Movement of the Robot

Turtlebot II, which is also known as Kobuki Turtle-
bot is used to verify the demonstration of the study.
This robot is widely accepted and used in academic ex-
periments. It has linear movement in the direction of
+x/−x and radial rotation on the +z/−z. This robot
is preferred to carry out the studies because of the fact
that it is cheaper, enabled to assemble a variety of sen-
sors and allowed to use open source material to control
[7]. The robot is utilized from a differential drive to
steer and detailed analyzing about its kinematic and
movement equations are given on Cook [2]. The robot
generally comes together with an integrated camera,
which is usually Asus Xtion or Microsoft Kinect also
used in this study. The Kinect is able to give depth
data as well as RGB one.

It could perform the scanning of an environment via
infrared lights on 57 horizontal and 43 vertical degrees.
The depth information given sensor is generally ac-
cepted reliable up to 5 meters. The different appli-
cation of robotics has been widely benefited from this
sensor because of its cheapness and presenting valu-
able data, especially in depth since its firstly announc-
ing in 2010. The depth information obtained from the
workspace can be converted to a 2 dimension (2-D)
laser data. In order to this, the depth information is
obtained and smoothed by means of different filters and
a single horizontal line excided from the measurement
data. Thus, a robot is able to behave like having a 2-D
laser scanner on it [29]. Taking into account the bulky
structure and expensiveness of laser sensors, this kind
of sensors gives a good opportunity on 2-D scanning
particularly if the edge determination or similar im-
plementations of an environment is mainly aimed. A
comparative work can be seen on [17] about the usage
of Kinect -like a laser sensor.

According to the presented left-orientated algorithm,
we have manipulated the robot generally in three di-
rections; forward movement and left or reverse turns.

First: Without any orientation decision, the robot
goes forward at a rate of 0.2 m·s−1 and fits the line by
means of P-controller considering the deviation from
the line center.

Second: Giving a decision on left-orientation, the
robot turns left 90 degrees. In this case, forward speed
is 0 m·s−1 while the robot turns fully 90 degrees in the
direction of left.

Third: While the robot follows the line, it may en-
counter the parts that the line finishes. Under these
circumstances, the forward speed of the robot is set to
0 m·s−1 and it turns reverse or 180 degrees.
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With the help of these three movements, the robot
could be manipulated autonomously with regard to the
offered algorithm.

3.3. System Algorithm

Active SLAM is a combination of SLAM and au-
tonomous exploration algorithms. With the presence
of the developed algorithm, the robot does not need
to navigate by a user or move randomly and SLAM
for a given environment could be done autonomously
by means of improved left-orientated line follower algo-
rithm. Assuming the robot is started somewhere in the
environment, the robot first investigates the existence
of line and if there is, it goes forward according to the
forward motion. The forward motion continues until
any rotation. Having a rotation, the robot asks for it
is left or right and then a different type of processes
are developed in accordance with the offered algorithm
(Fig. 6).

The image moments are thought of as features to
determine orientation way or the function of what to
do. An image moment is obtained in regard to the
investigation of the density function of image pixels.
A general physical moment expression can be described
in Eq. (3):

mij =
∫ ∫

S

xiyjf(x, y)dxdy, (3)

where S is the domain of workspace, i and j are the
degrees of the function of f [15], [20] and [27].

The general moment statement is described for com-
puter vision in Eq. (4) (continues case):

mij =
∫ ∫

R(t)
xiyjI(x, y)dxdy, (4)

where R(t) is the observed area by a camera, mij is
the origin moments and I(x, y) is intensity function.

(a) Original image. (b) HSV transformed image.

(c) Masked image. (d) Right masked image.

Fig. 2: Robot’s views.
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(a) Original view. (b) RGB masked view, the robot path is
misidentified.

(c) HSV masked view, the robot path is
defined correctly.

Fig. 3: Shady regions.

Algorithm 1 Overall algorithm scheme of the system
1: function NAVIGATION( ) . See Fig. 6
2: end function
3: function GLOBAL MAP ← SLAM( )
4: while depth image is acquired do
5: Get the depth image
6: Transform it into laser data
7: Match the sequential scan
8: Produce new particles

{
x

(i)
t

}
, using the x(i)

t−1 and π(xt | Z1:t, u0:t) . π(·): proposal distribution

9: Weight the particles using the equation w(i) =
p
(
x

(i)
t )|Z1:t,u0:t

)
π
(
x

(i)
t )|Z1:t,u0:t

) . importance weighting

10: Replace the particles having lower to the higher ones . resampling
11: Estimate the map m(i)

t for each particle pose x(i)
t corresponding to p

(
m

(i)
t |X

(i)
1:t , Z1:t

)
. map

estimating
12: end while
13: end function
14: while keeprunning do
15: SLAM() . part-1: constructing a map of the environment
16: NAVIGATION() . part-2: autonomous navigation
17: end while
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Fig. 4: Masked image.
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Fig. 5: Left masked image.
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Fig. 6: Navigation flowchart snippet.

The centered moments of order i+ j as regards the
centroid of the object is expressed by Eq. (5):

µij =
∫ ∫

R(t)
(x− cx)i(y − cy)jI(x, y)dxdy, (5)

where, cx = m10/m00, cy = m01/m00 are the centroids
of the 2-D object, (cx, cy). For the discrete case, the
integrals have been replaced by summations.

The line center is determined using the above-
mentioned equations from the masked images (Fig. 4
and Fig. 5). This center is updated as the image is
renewed. The deviation from this line center could be
thought of an error Eq. (6):

e− cx − ci, (6)

where, cx is the image center on x-direction and ci is
the center of the line. The computed error is applied to
the robot to correct the drift from the line. This scheme
can also be regarded as a P-controller structure owing
to the non-existence of neither past error nor predicted
one. The experiments are also tested with the PID
controller. However, it is observed that a P-controller
body is sufficient for following the line smoothly [27].

It is benefited from ROS (Robot Operating System)
to implement the study. ROS is a widely accepted and
used framework because it can support the representa-
tion of the many real-time parameters. ROS-gMapping
package is used to build a map of the environment and
localize the robot within it [7], [9], [10], [13] and [32].

This method is a kind of grid-based SLAM that uses
the Rao-Blackwellizied particle filter. Particles hold
the location of the robot and the map of the environ-
ment. Getting new observations lead to updated states
in every iteration. A scan matching method is used for
a measure of distance. According to technique, the
robot location is calculated using the matching of se-
quential observations (see Alg. 1). The output of this
method is the occupancy grid mapping of the environ-
ment. The algorithm mentioned in the study generally
consists of two main blocks that one of them is the ex-
ecuting SLAM and another one is the navigation the
robot autonomously. The pseudo-code of the algorithm
is as in Alg. 1.

4. Results

In this study, a factory-like environment has created to
carry out SLAM autonomously and to investigate the
mentioned algorithm effectiveness. For this purpose, it
is desired the robot to start a point referred in the map
and followed the line in accordance with the offered
algorithm. During the autonomous run, the robot has
performed four main actions: find line, left, reverse,
forward.

The frequency of the seen actions is pointed out in
Fig. 7 as in the form of a histogram. As it is expected,
the main action for the robot is the forward movements
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while the less one is “find line”. This result also shows
that when the robot finds the path, it sticks to the
developed algorithm.

Fig. 7: The histogram bar graphic of the movements during the
experiment.

According to the result of the trials, the robot can
successfully build the map of the environment au-
tonomously and robustly via the improved algorithm
free from the effects of brightness, shadow etc. Figure 8
shows the map of the environment using the method
and Fig. 9 points out the map created by user observed
navigation.

Fig. 8: The environment map via the offered method (WS:
Workstations).

Fig. 9: The environment map via user navigation (WS: Work-
stations).

5. Conclusion

This paper has investigated an autonomous SLAM ap-
proach. SLAM is a highly important issue for mobile
robots to implement their duties. A mapping of an
environment might be done by user guidelines, ran-
dom exploration or systematic algorithms. However,

the first two mentioned methods suffer from some se-
rious limitations such as the absence of a user or not
suitable observations for the user. In addition to this,
randomly exploration could lead to a loss of time.

As to our knowledge, there is no comprehensive
overview of recent research of vision-based for active
SLAM. This study is designed to fill this gap by pre-
senting a left-orientated navigation algorithm. Within
this scope, a map of the environment has been built
autonomously via the presented method without any
necessity of user input or random process. In order
to validate the presented method results, a factory-like
environment is made up. The environment has the
lines which describe the individual parts in a factory.
The robot can manage to build a map of the environ-
ment by way of the mentioned algorithm. The evi-
dence from the study indicates that the robot is able
to succeed autonomous SLAM without a need of an
external intervention. With the help of this method,
a created map done by one robot can easily be shared
with the other robots to save time or collaborate with
each other.

This study has thrown up some questions in need of
further investigation. For example, a future study in-
vestigating on different decision process using artificial
intelligence would be very interesting and might im-
prove the decision operation. On the other hand, fur-
ther research might combine the other types of SLAM
methods with this presented algorithm.
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