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Abstract. Induction motors are widely used in an in-
dustry and it is necessary to improve control methods
for induction motors to increase the efficiency of them.
In this paper, sliding mode controllers are proposed in-
stead of traditional PI controllers in vector control of
induction motor drives. Moreover, rotor speed is es-
timated by a sliding mode observer. In addition, the
robustness of control and observer algorithms are also
proved by Lyapunov’s criterion. The experiments are
obtained in different speed changes of an induction mo-
tor drive. These experimental results confirm the dy-
namic properties of a sensorless sliding mode control
of an induction motor drive.
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1. Introduction

Induction motors are a type of AC electrical drives.
They are widely used because they are robust, sturdy
and require low maintenance. However, control of an
induction motor is very difficult because of variable fre-
quency, complex dynamic and parameter variation, etc.

.
Vector control is one the most popular methods for

controlling induction motor drives because of efficiency
in a wide speed range. However, in traditional vector
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control, PI controllers are used. PI controllers depend
on parameters of the system and are sensitive to ex-
ternal noise. Sliding mode control was introduced in
1977, which overcomes disadvantages of PI control [I].
However, disadvantage of sliding mode control is chat-
tering phenomenon. In recent years, many researchers
have been involved in solving problems such as fuzzy
sliding mode control [4], rotor resistance estimation [3],
chattering reducing [I], etc.

During last years, sensorless control of AC machine
has been developed. Sensorless means that the rotor
speed is estimated from an observer or an estimator
such as Extended Kalman Filter (EKF), Model Ref-
erence Adaptive System (MRAS) [5], Luenberger Ob-
server (LO), Sliding Mode Observer (SMO) [2] and [6],
etc. Sensorless control increases the reliability and de-
creases cost and complexity of the system. Among
them, MRAS and EKF are suitable for applications
with a medium speed. In contrast, LO and SMO are
robust to noise and parameter variation [7].

In this paper, integral sliding mode control is pro-
posed in controlling of induction motor drives. More-
over, a sliding mode observer is used to estimate rotor
speed. Firstly, a mathematical description of the in-
duction motor is derived. Next, the sliding mode ob-
server, sliding mode controller and the proof of their
robustness are in the second part. The structure of the
sensorless sliding mode control of the induction motor
is introduced in the third part. A laboratory stand is
built and some experimental results are presented in
the fourth part. Finally, some conclusions are summa-
rized.
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2. Mathematical Model of
Induction Motor

The state representation of an induction motor is:
x=A -7+ B -,

where & = [iga, i58; YRa, wR,g]T is the state vector,
U= [Usq, usg]T is the input vector and ¥ is the output
vector. A, B and C are the state matrix, the input
matrix and the output matrix, respectively; and
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where 75, and igg are stator current components,
use and wugg are stator current components,
YRro and wYgrg are rotor current components in
the stator coordinate system [, ] respectively;
Rs and Rpgr are stator and rotor resistances,
respectively; Lg and Lgi are stator and ro-
tor inductances; L, is the mutual inductance;
o is the leakage constant and wg is the rotor speed.

3. Sensorless Sliding Mode
Control of Induction Motor

In this section, a sliding mode observer and an integral

sliding mode controller are developed for controlling

induction motor drive.
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3.1. Sliding Mode Observer

The sliding mode observer can be given as:

§:A~:§+B-ﬁ+G-sign(S), (11)
y=C.i

where Z is estimated state vector, ¢ is the estimated
output vector, G is the gain matrix of the sliding mode
observer, S is the sliding mode surface. G and S are
defined as:

. iSa — i5a
S=y—y=[.s -5 ] (12)
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G=|%2 9. (13)
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The rotor speed is estimated online by a PI controller
as following:

(ZJR:KPW~ZW+K]w~wadt, (14)

where Kp,, Ky, are proportional and integral con-
stant of a PI controller, and z, = (i5a — %Sa> '1[)3/3 —

+ (i55 — gSﬁ) - YRa-

3.2. Sliding Mode Control

In this section, the sliding mode control is proposed.
A sliding mode controller is designed in two steps:
choosing a sliding mode surface and choosing control
signals.

Integral sliding mode surfaces are chosen as:
Sy = [ (i, —im) dt + ¢y - (i, —im), (15)
Sy = [ (Wi, —wm) dt + ¢y - (Wi, — wim) , (16)

where S, and S, are sliding surfaces, iy, is the reference
magnetizing current amplitude, 7,,, is the actual magne-
tizing current amplitude, wy, is the reference mechani-
cal speed and w,,, = (2/p) -wg is the actual mechanical
speed with p is the number of poles of induction motor.

In Eq. and Eq. , the ¢, and ¢, are chosen to
get the desired characteristics. The flux current com-

ponent and torque current component are:

. TR .. .
ZSac:ci'(szlm)Jr ( )
i 17
T
+im + LN K, - sign(S.),
. J X
tsy = Cy - Kr (wm - wm) + (18)
J .
+cy o K, - sign(Sy),
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where Tp = Lgr/Rgr is the rotor time constant,
K is the proportional constant between the motor
torque and the torque current component, J is the mo-
ment of inertia.

Suppose that the rotor time constant and the load
torque are changed but are bounded as:

ATy

— | <D 19
Tr | = Tr> ( )
|TL| < Dr, . (20)

The system is asymptotic stable if and only if K,
and K, satisfy:

K, > Dy, - |i5, —im], (21)
Cy
Proof:
The Lyapunov function is chosen as:
1 2 2

The Eq. is positive definite function. The first
derivative of Lyapunov function is:

V=288, +8, 5, (24)
The Eq. is negative definite function if:
S, = —K, - sign(S:), (25)
S, = —K, - sign(Sy), (26)
where sign is the signum function:
1, x>0,
sign(z) =< -1, x =0, (27)
1, x<0,
We have:
: - 1 . .
Sy = ('Lm - Zm) — Cg Ti . (ZSx - Zm) . (28>
R

Replace ig, in Eq. into Eq. , Eq. be-

comes: AT
G AT e

Tr + 1ATR ( ) (29)
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The first derivative of S, has the opposite sign with
S, so condition for K, is derived as in Eq. . Next,
the first derivative of S, is:

. 1
S, =cy-—-Tp — K, -sign(Sy).

= (30)
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Similarly, the first derivative of Sy has the opposite
sign with S, and the condition for K, is in Eq. .

Therefore, with the control signals as in Eq.

and Eq. (18) and with the condition of K, and K,
as in Eq. (21) and Eq. , the system is asymptotic

stable. However, to eliminate the chattering problem,
the saturation is used instead of signum function in

Eq. and Eq. .

4. Sensorless Sliding Mode
Control Structure of
Induction Motor Drive

The control structure of Induction Motor (IM) drive is
shown as in Fig. [ This figure is the basic scheme of
vector control of an induction motor drive but PI con-
trollers in speed control loop and flux control loop are
replaced by Sliding Mode Controllers (SMC). A slid-
ing mode observer is used to estimate rotor speed and
a current model is used to estimate the rotor flux com-
ponents. The control of induction motor is described
step by step as follows:

e Step 1: igq, igp are measured by current sensors.

o Step 2: igq, igp are calculated from ig,, gp.

e Step 3: The stator angle 4 and rotor flux compo-
nents are estimated by a current model.

e Step 4: Calculate ig,, isy from ig,, iss and 4.

e Step 5: Calculate ig, and i3, by sliding mode
controllers as in Eq. and Eq. .

e Step 6: Calculate the reference stator voltage com-
ponents ug, and ug, by PI controllers.

e Step 7: ug, and ugg are calculated from ug, and
ug, with the 4 from step 3.

e Step 8: Calculate ug,, ug, and ug, and feed to
PWM to control induction motor.

e Step 9: The ugq, usg, ise and isg are input of
sliding mode observer, which estimates the rotor
speed. The stator voltage components ug, and
usp depends on the ug, and ugg and the used
method of Pulse Width Modulation (PWM), sine
PWM or space vector PWM.

5. Experimental Results

A laboratory stand with an induction motor drive is
designed for the experimental verification of the cho-
sen algorithms. The experimental platform is shown
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Fig. 1: Sensorless sliding mode control structure of induction motor drive.
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Fig. 2: Laboratory stand of control of the induction motor.

in Fig. In the laboratory stand, a Siemens induc-
tion motor with the catalog number 1LA7106-4AA10
is used. Parameters of the induction motor are given
in Tab. [[] At the end of the induction motor, an
incremental sensor is mounted and its resolution is
3000 pulses per revolution. The induction motor is con-
nected to an indirect frequency converter with the volt-
age DC-link, which was designed at the Department of
Electrical Power Engineering, VSB-Technical Univer-
sity of Ostrava. The control of the voltage inverter is
performed by the sinusoidal pulse width modulation
with control frequency 10 kHz and control amplitude
10 V. Therefore, the transfer constant Ky is 1/2.

The control system is a Digital Signal Processing
(DSP) of Texas Instrument eZdspT™F28335 because
it is highly integrated and is a high performance so-
lution for a demanding control application. The most
important part of program is ADC interrupt subrou-
tine, which is done for every 50 ps. Setting reference
speed, measuring current components, calculating cur-
rent and flux components as well as control signals, etc.
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are done in this subroutine. The load torque is from
an electrodynamometer. At the speed of 100 rpm, the
maximum load torque is just 1.5 Nm.

Tab. 1: Parameters of the induction motor.

Parameter Value
Rated power 2.2 kW
Rated speed 1420 rpm
Rated voltage 230/400 V
Rated current 8.43 A/4.85 A
Rated torque 14.8 Nm

Number of pole pairs 2

Stator resistance 3.44 Q
Stator inductance 0.1546 H
Rotor resistance 1.7178 Q2
Rotor time constant 0.09 s
Moment of inertia 0.005 kg-m?

In our laboratory, the data are stored in the memory
of DSP and then transferred to the MATLAB environ-
ment to draw responses. The sampling time is chosen
as 10 ms. Because of the limitation of memory of the
DSP, the response time is 4 s and the response of speed
is divided into two cases with and without load. With-
out load, the reference speed is 100 rpm in the forward
rotation and 60 rpm in the reverse rotation. With load,
the reference speed is chosen as 100 rpm and the load
torque of 1.5 Nm is added at the time of 1.5 s.

Figure [3] Fig. [ Fig. [0} Fig. [6] and Fig. [7] show the
time response of important parameters of the induc-
tion motor drive, which were obtained by measurement
from the laboratory stand in case of no load. When
having load, the time response of rotor speed, torque
and magnetizing current component and flux current
component are in Fig. [ Fig. [0 and Fig. respec-
tively.
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Fig. 6: Estimated stator current vector components ise and
i55~

The response of speed is good, the percentage of
overshoot is 9 %, the time response is 0.7 s and the
error between the reference speed and the actual speed
is just about 1 rpm. The speed decreases to 98.5 rpm
at the load. After the control process, the speed re-
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Fig. 10: Magnetizing current component and flux current com-
ponent.

turns to the value corresponding to the reference speed

(see Fig. [§).
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6. Conclusion

In this paper, the sensorless sliding mode control with
sliding mode observer is presented in a low speed range.
The theoretical assumptions are verified through simu-
lations in MATLAB-Simulink environment and experi-
ments on laboratory stand. The estimated rotor speed
can be used in the speed control of the induction motor
drive. The absolute error between the reference speed
and the actual speed in sensorless sliding mode control
of the induction motor is just 1 rpm without load and
1.5 rpm with load at the reference speed of 100 rpm
(percentage of error is just 1 % to 1.5 %). When com-
paring with PI controllers, sliding mode controllers give
better results, the relative size of overshoot is smaller,
settling error is smaller as well and it is more robust
to external noise. When having load torque, in sliding
mode control, the decreasing of rotor speed is smaller
than in PI control.
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