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Abstract. A novel topology of four-quadrant analog
multiplier circuit is presented in this paper. The volt-
age mode technique is employed to design the circuit
in CMOS technology. The dynamic input and output
ranges of the circuit are improved owing to the fact
that the circuit works in the saturation region not in
weak inversion. Also the proposed multiplier is suitable
for low voltage operation and its power consumption is
relatively low. In order to verify the performance of
the proposed circuit, performance of the circuit affected
by second order effects including transistor mismatch
and mobility reduction is analyzed in detail. It will be
shown that any conceivable mismatch in the transistor
parameters leads to second harmonic distortion. Ad-
ditionally, the effect of mobility reduction in the third
harmonic distortion will be computed. In order to sim-
ulate the circuit, Cadence and HSPICE software are
used with TSMC level 49 (BSIM3v3) parameters for
0.18 µm CMOS technology, where under supply volt-
age of 1.5 V, total power consumption is 44 µW, the
corresponding average nonlinearity remains as low as
1 %, and the input range of the circuit is ±400 mV.
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1. Introduction

In recent years, analog multipliers are widely used in
many applications such as phase-locked loops, adaptive

filters, modulators, automatic gain controlling, image
processing, artificial neural networks and fuzzy inte-
grated systems [1], [2], [3] and [4]. Different methods
of implementation of this building block have been re-
cently presented based on the use of bulk driven MOS
[5], Floating Gate MOS (FGMOS) [6] and class-AB
mode [7]. In the past decade, the demand for portable
operation of electronic systems has led to the trend of
designing circuits to be featured with low power con-
sumption and operate for low supply voltages. One
possible technique to design the low-power dissipation
multiplier circuit is to use MOSFETs in sub-threshold
region [8], [9] and [10] in which most of them follow
the Gilbert cell topology and modified Gilbert cell [11].
The drawback of designs in this region has been re-
ferred to poor dynamic range, limited bandwidth and
low voltage swing. Another approach of designing low
power multiplier circuits is to use the translinear prin-
ciple of MOS transistors operated in the weak inver-
sion [12] and [13]. Although this approach has the ad-
vantage of low power consumption, the dynamic range
of these circuits is very small and operation speed is
slow. On the contrary, presented multipliers based on
the translinear loop in saturation region exhibit wider
bandwidth, higher dynamic range and lower distortion
and thus they are more preferred than those operating
in weak inversion [14]. Nonetheless, the channel length
modulation and body effect are the important issues
in the circuits based on translinear loop principle. An-
other salient feature of the circuits is the four-quadrant
operation capability, an important asset very useful in
various applications [15] and [16]. Some of the well-
known multiplier circuits operate only in one [17] and
[18] or two quadrants [19] and [20], which was discussed
in [21] and not suitable for many of mentioned appli-
cations.
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Another factor, which is important in the multiplier
circuit, is non-linearity factor, because of the fact that
the multiplication operator is a linear map between in-
put and output. Therefore this factor is a serious chal-
lenge in the multiplier circuits, which is commonly af-
fected by body effect, mobility reduction and mismatch
in the circuit devices. In some existing analog multi-
pliers, the effects of these non-idealities were properly
studied and a few techniques were proposed in order
to reduce the non-linearity [22] and [23]. However,
they suffer from low accuracy and/or low bandwidth.
Moreover, single supply voltage circuits are preferred
to those in dual mode [24], where the multipliers re-
ported in [8] and [20] require dual supply voltage. As
such these circuits are not suitable for today’s world of
portable equipment.

In this paper, a novel design of four quadrant analog
multiplier is presented which benefits from advantages
of differential output topology. The dynamic input and
output ranges of the circuit are significantly improved.
High linearity and high accuracy are further advan-
tages of the circuit. Also the proposed multiplier is
suitable for low voltage operation and its power con-
sumption is relatively low. The performance of the pro-
posed multiplier is characterized using HSPICE with
TSMC in 0.18 µm CMOS technology. The paper is or-
ganized in 5 sections: The proposed circuit is presented
in Sec. 2. , followed by the performance analysis in
Sec. 3. In Sec. 4. , HSPICE simulation results of
proposed multiplier circuit are presented to prove the
efficiency of the design. Finally, Sec. 5. concludes the
most important achievement of the proposed circuit.

2. The Proposed Multiplier

The proposed four-quadrant multiplier circuit is shown
in Fig. 1, which is based on the square-difference alge-
braic identity as:

(x+ y)2 − (x− y)2 = 4xy. (1)

According to this, to realize this equation, two squar-
ing functions should be designed in which their out-
puts need to be subtracted. Let us consider the pro-
posed circuit of Fig. 1. Assume that all of the transis-
tors operate in saturation region (except for M17 and
M18), thus the drain current of transistors by neglect-
ing the second order effect such as mobility reduction
and channel-length modulation can be expressed as:

ID = K(VGS − VT )2, (2)

where K = 0.5µ0COX(W/L) is related to trans-
conductance parameter, VGS is gate-to-source voltage
and VT represents the threshold voltage of MOS tran-
sistor which can be affected by body effect. The body
effect refers to change in the transistor threshold volt-
age resulting from a voltage difference between the
transistor source and substrate, which can be charac-
terized by:

VT = Vt0 + γ
[√

VSB + |2ϕF | −
√
|2ϕF |

]
, (3)

where Vt0 is the zero-bias threshold voltage, γ is the
body-effect coefficient and ϕF is the Fermi potential.
Considering the figure, two squaring circuits are shown
in left half and right half of the structure. Focusing
on the left side squaring circuit, since transistors M1

and M2 are biased in the saturation region and also
ID1 = ID2, the relationship can be written as:

KN (Vin − V1 − VTN)2 = KN (V1 − VTN)2. (4)

Simplifying equation above we have:

V1 =
2Vin1VTN − V 2

in1

(−2Vin1 + 4VTN)
=
Vin1

2
. (5)

One can find the voltage of V2 at the same way as:

V2 = −Vin1
2
. (6)

The voltages of V1 and V2 are utilized to turn on M9

and M10 transistors, respectively. In this case, their

Vin1
_Vin1+ Vin2

_
Vin2+

Vout
_+
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Fig. 1: The proposed four-quadrant analog multiplier circuit.
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currents are added together and flow to transistor M13:

ID13 = ID9 + ID10 =

KP

[
(VDD − V1 − |VTP|)2 + (VDD − V2 − |VTP|)2

]
.
(7)

Replacing Eq. (5) and Eq. (6) in Eq. (7); after few
mathematical manipulations we have:

ID13 = 2KP

[(
Vin1

2

)2

+ (VDD − |VTP|)2
]
. (8)

It can be clearly seen from Eq. (8) that the current
ID13 is the square of the input voltage plus some con-
stant voltages. The same procedure can be followed for
the right half of the circuit to obtain ID15:

ID15 = 2KP

[(
Vin2

2

)2

+ (VDD − |VTP|)2
]
. (9)

The currents of ID13 and ID15 are transferred to the
output through transistors M14 and M16, respectively.
Transistors M17 and M18 are biased in the triode region
(by setting VBp = −1) and perform as the resistors in
which their resistance values can be represented by:

Rn ≈ [µnCox(W/L)n(VSGn − |VTP|)]−1
. (10)

By setting R17 = R18 = R, the output voltage of
proposed circuit can be derived as:

Vout = R (ID14 − ID16) =

= 2RKP

[(
Vin1

2

)2

−
(
Vin2

2

)2
]
.

(11)

According to Eq. (11), by establishing Vin1 = Vx+Vy
and Vin2 = Vx − Vy the ultimate voltage is eventually
what would be expected as follows:

Vout = 2RKP (VxVy). (12)

Take notice that summation of the signals is pro-
vided by series connection of the voltage sources (Vx
and Vy). Also subtraction of the input signals was re-
alized in the same way except for changing the polarity
of Vy, which were performed using a well-known invert-
ing amplifier. Also, there is no need subtraction at the
output node, because the output is differential.

3. Performance Analysis

In this section, performance of the circuit affected by
second order effects including transistor mismatch and
mobility reduction is analyzed in detail. It will be
shown that any conceivable mismatch in the transis-
tor parameters leads to second Harmonic Distortion

(HD). Additionally, the effect of mobility reduction in
the third harmonic distortion will be computed. Fol-
lowing that, the effect of corresponding parameters de-
rived in each section as well as improvement method-
ology will be thoroughly discussed.

3.1. Second HD Due to the
Mismatch

In Sec. 2. , the well-matched parameters including
trans-conductance and threshold voltage of the transis-
tors were assumed to obtain the output of the circuit.
Considering Eq. (5), due to the fact that the voltage of
V1 is resulted by supposing these matched parameters,
any possible mismatch in the proposed circuit will af-
fect the voltage of this node. Similarly, the voltages of
V2, V3 and V4 get affected by the mismatch accordingly.
Since these voltages have direct proportion to Vin1 and
Vin2, consequently the total mismatch is referred to the
input signals and can be modeled as:

V1 =
Vin1

2
+ ∆vin1Vin1, (13)

V2 = −Vin1
2
−∆vin1Vin1, (14)

V3 =
Vin2

2
+ ∆vin2Vin2, (15)

V4 = −Vin2
2
−∆vin2Vin2, (16)

where ∆vin1 and ∆vin2 are mismatch percentages of
Vin1 and Vin2, respectively. By applying Vin1 = Vx+Vy
and Vin2 = Vx−Vy to the multiplier circuit, the output
voltage is given by:

Vout = 2RKP

[
VxVy + (2∆v2in1)(Vx + Vy)2 . . .

. . .− (2∆v2in2)(VxVy)2
]
.

(17)

It can be clearly seen that the terms of ∆v2in1 and
∆v2in2 are very small (because ∆vin1 and ∆vin2 < 1),
therefore the resulted error will be negligible. It is
worthwhile to calculate the harmonic distortion of the
circuit at the output considering the method presented
in [25], if one of the inputs (Vx) is kept constant and
the other one is sinusoidal in the form of Vy = v̂m sin t,
second harmonic distortion can be derived as follows:

HD2 =
∆v2in1 −∆v2in2

2Vx (4∆v2in1 + 4∆v2in2 + 1)
v̂m. (18)

The equation implies that when the mismatch percent-
age of ∆v2in1 and ∆v2in2 increases, second harmonic dis-
tortion decreases. Also, it decreases with decreasing Vx
as well.
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3.2. Effect of Mobility Reduction in
Third HD

If the mobility reduction is taken into calculations, the
drain current of a MOS transistor operated in satura-
tion is given by [26]:

ID =
K(VGS − VT )2

1 + θ(VGS − VT )
, (19)

where θ is the mobility degradation parameter which
varies typically from 0.001 to 0.1 V−1. This equation
may be expanded in a Taylor series:

ID = K(VGS − VT )2·
·
[
1− θ(VGS − VT ) + θ2(VGS − VT )2 + . . .

]
.

(20)

To simplify the calculations, just the first order of θ
is used, and the higher-order terms are ignored. Re-
placing the expansion in Eq. (4), one can reach V1 and
V2 as:

V1 ≈
Vin1

2
+
θVin1(V 2

in1 − 3Vin1VTP + 3V 2
TP )

4VTP
, (21)

V2 ≈ −
Vin1

2
+
θVin1(V 2

in1 + 3Vin1VTP + 3V 2
TP )

4VTP
. (22)

The same procedure can be followed to obtain V3 and
V4. In this case, the output of the multiplier circuit can
be represented as follows:

Vout ≈ RKP

(
V 2
in1 − V 2

in2 + . . .

. . .
θVDD(2V 3

in2 − 2V 3
in1 − 3V 2

in2VTP + 3Vin1VTP)

VTP

)
.

(23)

By applying Vin1 = Vx + Vy and Vin2 = Vx− Vy, the
final output will be obtained. Since the output voltage
includes third-order of the inputs, third harmonic dis-
tortion is achieved by keeping one of the inputs (Vx)
as a constant and the other one as sinusoidal. Again
using the method presented in [25] we have:

HD3 =
θVDD

2VxVTP − 4θ(3VTP − V 2
x + 2VxVTP)

v̂2m. (24)

4. Post Layout Simulation
Results

In this section, simulation results are presented us-
ing HSPICE with TSMC level 49 (BSIM3v3) param-
eters for 0.18 µm CMOS technology so as to verify
the performance of the proposed circuit. The simu-
lation results are carried out after extracting the lay-
out, which is drawn by Cadence software using single

poly and two metals (Metal1 and Metal2). Figure 2
shows the full layout of the circuit, in which the area is
66.35 µm×58.2 µm. The aspect ratio of transistors is
given in Tab. 1 and the supply voltage is 1.5 V. Consid-
ering the condition of triode region for PMOS transis-
tors of M17 and M18, choosing VBp = −1 V guaranties
that these transistors operate in the triode region and
work as the active resistances. DC transfer charac-
teristic of the circuit over a considerable range of the
inputs is shown in Fig. 3, in which one of the inputs
(Vy) is kept constant and the other one (Vx) swept from
−400 mV to +400 mV. By changing the constant volt-
age of Vy and then sweeping of Vx, desired outputs will
be obtained. Within this range, the average of mea-
sured nonlinearity error is 0.94 %.

Tab. 1: Transistor aspect ratios.

Transistor name W/L (µm/µm)
M1-M8 10/0.18
M9-M12 12/0.18
M13-M16 4/0.18
M17-M18 15/0.18

Fig. 2: Layout of the proposed multiplier circuit.
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Figure 4 shows the multiplier being used for balance
modulator as well as the error quantity. Vx and Vy are
500 kHz and 50 kHz, 800 mVP-P sinusoidal carrier and
modulation signals, respectively fed to inputs of the
proposed multiplier. Also Fig. 5 demonstrates how the
multiplier circuit can be employed as a frequency dou-
bler. In this simulation, if both frequencies of the input
voltage are 500 kHz, the figure shows the correspond-
ing output waveform with double frequency of 1 MHz.
Frequency response in Fig. 6 shows that bandwidth of
the circuit is 196 MHz when the input signal is applied
to Vx, and Vy = 400 mV. The same result is obtained
for constant value of Vx and AC signals for Vy.
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Fig. 4: Proposed multiplier as an amplitude modulator.
500 kHz carrier sinusoid and 50 kHz modulating sig-
nal (upper waveform); AC modulated output (middle
waveform); Error measurement (lower waveform).
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Fig. 5: The proposed multiplier as a frequency doubler, input
signals (upper waveform); output signal (middle wave-
form); Error measurement (lower waveform).
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Fig. 6: Frequency response of the circuit.

The Total Harmonic Distortion (THD) versus input
signal at 100 kHz and 1 MHz is shown in Fig. 7. THD
simulations are carried out for both of Vx and Vy, when
one of them is constant and another one is sinusoidal.
In the worst case, an input signal of 1 Vp-p at a fre-
quency of 1 MHz resulted in a THD of less than 1.2 %.
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Fig. 7: Relation between THD, Vx and Vy .

In order to evaluate the robustness of the circuit
against the process variation, the Monte Carlo anal-
ysis with 100 samples is performed by applying ±5 %
Gaussian distribution at ±3σ level in the variation of
all transistors aspect ratio and threshold voltage si-
multaneously. Two sinusoidal signals with the frequen-
cies of 500 kHz and 1 MHz and also 400 mVp-p and
800 mVp-p amplitudes are applied to the circuit under
the aforesaid variations and then the outputs are com-
pared with the ideal values. The average of error in
each sample is considered as the relative error. The
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Fig. 8: Monte Carlo analysis of the circuit for ±5 % mismatch
in threshold voltage and transistors aspect ratio.

result is shown in Fig. 8, in which 68 % of the total
samples occurred with the relative error of less than
±1 %.

To analyze the performance of the proposed circuit
regarding temperature variations the simulations are
carried out in different temperatures. The threshold
voltage is the most important parameter in the analy-
sis of temperature dependence of CMOS circuits [27].
Therefore, a small variation in threshold voltage causes
a large change in the output. Although single-ended
output of the squaring circuits (see Eq. (8) or Eq. (9))
includes the threshold voltage, the output of the com-
plete circuit (see Eq. (12)) does not depend on the
threshold voltage, therefore no remarkable change oc-
curs at the final output.

Figure 9 shows the relative error of the circuit in
different temperatures, where the maximum error oc-
curred at −40 ◦C with 1.18 %. In this simulation, the
obtained output at the temperature of 25 ◦C is consid-
ered as the reference value (relative error = 0), then the
resulted outputs in other temperatures are compared
with that value and the relative error is computed. It
should be pointed out that the input signals are the
same as the signals that were applied in the Monte
Carlo analysis. The characteristics of the circuit are
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Fig. 9: Relative error of the circuit versus different tempera-
tures.

summarized in Tab. 2 and compared with the former
works to prove the efficiency of the circuit.

5. Conclusion

A new CMOS voltage-mode analog multiplier circuit
was presented in this paper. The key features of the
circuit are its high accuracy and high linearity as well
as its body effect-free operation, owing to the fact that
the circuit was designed based on a new symmetrical
configuration. Compared to the previously reported
works, the dynamic input and output ranges of the cir-
cuit are considerably improved, since the circuit works
in the saturation region not in weak inversion. To prove
the efficiency of the proposed circuit, it was employed
as a modulator and frequency doubler, and the simu-
lation results were compared with ideal performance
of these applications. The performance of the pro-
posed multiplier was characterized using HSPICE with
TSMC level 49 (BSIM3v3) parameters for 0.18 µm
CMOS technology.

Tab. 2: Comparative parameters of the proposed multiplier with other recent works.

[9] [10] [22] [24] This work
Power supply (V) 0.5 1.5 1.4 1.5 1.5
Input range (mV) ±80 ±120 ±560 ±200 ±400

Output range (mV) ±10 ±150 ±10 µA ±2 ±250
Power consumption (µW) 0.714 6.7 72.6 32 44

THD (%); 100 kHz, 400 mV 4.11 4.2 1.3 1.7 0.58
Nonlinearity (%) 5.6 3.2 1.9 5.3 0.94

−3 dB bandwidth (MHz) 0.221 0.268 249 1980 196
Tech. (µm) 0.18 0.35 0.25 0.35 0.18
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