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Abstract. The use of single time-instance features,
where entire speech utterance is used for feature com-
putation, is not accurate and adequate in capturing
the time localized information of short-time transient
distortions and their distinction from plosive sounds
of speech, particularly degraded by impulsive noise.
Hence, the importance of estimating features at multi-
ple time-instances is sought. In this, only active speech
segments of degraded speech are used for features com-
putation at multiple time-instances on per frame ba-
sis. Here, active speech means both voiced and unvoiced
frames except silence. The features of different combi-
nations of multiple contiguous active speech segments
are computed and called multiple time-instances fea-
tures. The joint GMM training has been done using
these features along with the subjective MOS of the cor-
responding speech utterance to obtain the parameters of
GMM. These parameters of GMM and multiple time-
instances features of test speech are used to compute
the objective MOS values of different combinations of
multiple contiguous active speech segments. The overall
objective MOS of the test speech utterance is obtained
by assigning equal weight to the objective MOS values
of the different combinations of multiple contiguous ac-
tive speech segments. This algorithm outperforms the
Recommendation ITU-T P.563 and recently published
algorithms.
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1. Introduction

The speech processing algorithms and codecs are used
in modern telecommunication systems and thus the
monitoring and maintaining the quality of speech is
important from customer satisfaction point of view to
maintain and improve the quality of service. One as-
pect of this requirement for the automated system is
to evaluate the speech quality objectively and continu-
ously. If the quality of speech is not up to the mark, the
proper bandwidth allocation or other speech enhance-
ment techniques can be utilized to improve the quality
of speech and thus the quality of service. There are
two methods for signal based speech quality measure-
ment: Double ended (Intrusive technique) and single
ended (Non-intrusive technique). Double ended (In-
trusive technique) requires original clean speech signal
along with the received degraded speech signal to com-
pute the quality rating called objective MOS, while
single ended (Non-intrusive technique) uses only re-
ceived degraded speech signal to compute the quality
rating [1]. The non-intrusive method of speech qual-
ity measurement is suitable for system automation and
real-time applications where the original clean speech
signal is practically impossible to obtain such as mobile
communications, telephonic communication, Direct-to-
Home (DTH) signal of television (TV), Voice over In-
ternet Protocol (VoIP) signal, etc. The Recommen-
dation ITU-T P.563 (May 2004) is the standard for
single ended (non-intrusive) speech quality measure-
ment [2]. The subjective measurement is the ideal way
to obtain the speech quality rating of degraded speech
signal where the speech signal is played and average
value of opinions of about 16–20 listeners is treated
as quality rating for a particular speech utterance and
called the subjective MOS as per the Recommenda-
tion ITU-T P.800-Aug.1996 [3]. The measurement of
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speech quality has been done using different types of
features obtained from speech encoder and GMM map-
ping in [4], without considering any degradation model.
The human auditory system modelled explicitly or im-
plicitly as Lyon’s cochlear model is used in this work.
Reference [5], which takes into account for the criti-
cal band and different auditory phenomenon such as
masking the effect of human auditory system. The
functional role of the human auditory system and the
articulator system characteristics in the form of tem-
poral envelope representation of speech have been uti-
lized in the Auditory Non-Intrusive Quality Estimation
(ANIQUE) model [6]. The Lyon’s auditory features
computed for entire speech let us call as “single time-
instance features” and their mapping to the speech
quality score by GMM has been given in [7]. The
combination of different single time-instance speech
features including auditory features and features re-
lated to vocal-tract resonances are used for GMMmap-
ping and speech quality evaluation in [8]. The method
given in [9] is assessing dimensions of perceptual quality
space using linear regression and the dimension used is
the loudness of speech which describes a non-optimal
sound level. Estimating the quality and intelligibility
of speech degraded by additive noise and distortions
associated with telecommunication networks, based on
a data driven framework of feature extraction and tree
based regression, is given in [10].

The limitations of current research in the literature
are that the features used for speech quality measure-
ment are single time-instance, where the entire speech
utterance is used for the computation of features, and
these features are mapped to the objective quality rat-
ing score. In this work, the features are computed at
multiple time-instances which capture the presence of
noise at different locations of the speech utterance in-
stead of averaging the effect over the entire speech ut-
terance. Thus, the use of single time-instance features
is not accurate and adequate in capturing the time lo-
calized information of short-time transient distortions
and their distinction from plosive sounds of speech,
particularly degraded by impulsive noise. The Voice
Activity Detection (VAD) algorithm is employed to get
the active speech segments of different speech utter-
ances [11]. Here, active speech means both voiced and
unvoiced frames except silence. Now, the combinations
of multiple contiguous active speech segments of speech
utterance are made in increasing order till all the ac-
tive speech segments are accounted for. These combi-
nations of active segments are divided into frames and
features are computed on per frame basis using Lyon’s
auditory model. These per frame features are com-
bined over the frames to give features of the different
combinations of multiple contiguous active speech seg-
ments. In similar manner, Mel-Frequency Cepstral Co-
efficients (MFCC) [12] and [13] and Line Spectral Fre-
quencies (LSF) features [14] are computed at multiple

time-instances and concatenated to obtain the feature
vector. The subjective MOS of the speech utterance
is taken as the subjective MOS for each of the dif-
ferent multiple time scale estimates (the combination
of multiple contiguous active speech segments) during
GMM training. The objective MOS values for each of
the multiple time scale estimates are computed using
the GMM parameters and different multiple time-scale
features of test speech utterance. The overall objec-
tive MOS of the test speech utterance is computed by
assigning equal weights to the objective MOS values
of different multiple time scale estimates. The results
are compared with Recommendation ITU-T P.563, the
standard for non-intrusive technique of speech quality
measurement, and different state-of-art recently pub-
lished works [13], [15], [16], [17] and [18], which are
using single time-instance features approach in terms
of Pearson’s correlation coefficient and RMSE between
the subjective MOS and the overall objective MOS of
speech utterances. The proposed algorithm using the
combination of Lyon’s auditory features, MFCC and
LSF features, all computed at multiple time-instances,
outperforms the state-of-art recent works.

2. Multiple Time-Instances
Auditory Features

The more detailed statistical information of local fea-
tures, particularly for contiguous speech segments, can
be captured in multiple time-instances estimates, if
non-stationary noise is present in the speech utterance.
Thus, it is expected that the correlation between the
subjective and the objective MOS in speech quality
measurement problem will improve in multiple time-
instances features approach. The degraded speech is
input to the multiple time-instance auditory feature
computation modules. At the very first stage, it will
have to pass through VAD algorithm to remove silence
region and find out the different active speech regions
present in the speech utterances. For a speech utter-
ance having three active speech segments, the output
of VAD algorithm is schematically shown in Fig. 1.

The active speech segments at the output of the VAD
algorithm are used in increasing order to make the dif-
ferent combinations of multiple time duration active
speech segments till all the active speech segments are
accounted for. The method of making concatenation
to obtain different multiple time-instances estimates as
the combinations of active speech segments for a speech
utterance having three active speech segments is shown
in Fig. 2. It will be continued till all the active segments
are accounted for.

The first active segment is, say SEG1. Next, the
combinations of the first and second active speech seg-
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Figure 2: Combinations of three active speech segments for different time-instances estimates for illustration. 
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Fig. 2: Combinations of three active speech segments for different time-instances estimates for illustration.

ments is, say, SEG2. The combinations of the first,
second and third active speech segments is, say, SEG3
and so on. In a similar manner, for K number of ac-
tive speech segments in a speech utterance, there will
be K different combinations of multiple contiguous ac-
tive speech segments, on the lines of SEG1, SEG2, . . .
up to SEGK. These combinations of multiple contigu-
ous active speech segments such as SEG2, SEG3, . . .
up to SEGK are divided into frames of fixed duration
of 16 ms and passed through 64-channel Lyon’s audi-
tory model to compute 64 auditory features on frame-
by-frame basis after windowing with a Hamming win-
dow of 16 ms duration with 50 % overlap. The mean,
variance, skewness and kurtosis over the frames of 64
auditory features are computed and concatenated to
obtain 256-dimensional Lyon’s feature vector. The di-
mensionality of the feature vector is reduced from 256
to 30 by using Principal Component Analysis (PCA)
to preserve more than 98 % of the energy. In the mul-
tiple time-instances features approach, the duration of
active speech segments is varying over time.

In a similar manner, 13-dimensional multiple time-
instances MFCC and 10-dimensional multiple time-
instances LSF feature vectors are also computed on
per frame basis. All these feature vectors are now con-
catenated to obtain a 53-dimensional feature vector.
In a similar manner, 53-dimensional feature vectors are
computed for all multiple time-instances estimates such
as SEG2, SEG3 and so on up to SEGK. For the train-
ing of joint GMM according to Expectation Maximiza-
tion (EM) algorithm [19], the 53-dimensional feature
vectors are appended with the subjective MOS values
of the corresponding speech utterance. The subjective
MOS for each of the multiple time-instances estimates
is taken as the subjective MOS of the speech utterance,
as shown in Fig. 3, because no separate subjective MOS
will be available for the multiple time-instances esti-
mates in any database. The objective MOS of each of
the multiple time-instances estimates is computed us-

ing GMM parameters namely mean, mixture weight,
and covariance matrix and 53-dimensional feature vec-
tors of the corresponding multiple time-instances esti-
mates. The objective MOS value of ith multiple-time
scale estimate θ̂i as a function of 53-dimensional mul-
tiple time-instances feature vector ψ is obtained using
the Minimum Mean Square Error (MMSE) criterion
[4]:

θ̂i = θ̂i(ψ) = argminθ̂i(ψ)E
{
(θ − θ̂i(ψ))2

}
=

= E {θi/ψ} ,
(1)

where θ is the subjective MOS of corresponding speech
utterance. The three databases are randomized to use
leave-one-out10-fold cross validation process for train-
ing and testing. That is, 90% data are used for train-
ing and 10 % data are used for testing. The process
is repeated 10-times to obtain the objective MOS val-
ues for all the multiple time-instances estimates. In
this work, GMM with 12 mixture components are used
and all the GMM training parameters are computed
offline and stored in a library. In real-time monitor-
ing, only test speech will be used but there will be
an algorithmic buffering delay corresponding to one
sentence speech utterance before the multiple time-
instances speech quality evaluation algorithms are ap-
plied.

The averaging of the objective MOS values of the
multiple time-instances estimates is done i.e. equal
weights are assigned to the objective MOS values of
the different multiple time-instances estimates to com-
pute the overall objective MOS of the corresponding
speech utterance. If θ̂ is the objective MOS of speech
utterance, then it is computed by taking the average
of the objective MOS values of K SEGs, θ̂i is given by:

θ̂ =
1

K

K∑
i=1

θ̂i, (2)
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Fig. 3: Computation of 53-dimensional feature vector, and appending with the subjective MOS for GMM training.

where K is the number of active speech segments which
will be equal to the number of combinations of multiple
contiguous active speech segments.

3. Description of Databases

In this work, three databases are used namely ITU-
T Supplement-23 database [20], NOIZEUS-2240 and
NOIZEUS-960 [21]. The first database of 1328 speech
utterances constitute Expt.-1 (A, D, O) having a total
of 528 speech utterances with 8 kbps ITU & ETSI stan-
dard CODECS interworking and Expt.-3 (A, C, D, O)
is having a total of 800 speech utterances with channel
errors and background noises. All these 1328 speech
utterances degraded at 332 different degradation con-
ditions and are of 8 second duration each, sampled at
8 kHz and subjective MOS labelled according to Ab-
solute Category Rating (ACR). The second database
is having a total of 2240 degraded speech utterances
of 3 second duration each, sampled at 8kHz and de-
graded by 4 different types of noise namely babble,
car, street and train noise at two different SNR levels,
5 dB and 10 dB. A total of 20 clean speech utterances
are degraded at 112 different conditions of degrada-
tion. The third one, NOIZEUS-960 database, which
is taken from NOIZEUS database of noisy speech cor-
pus of 960 speech sentences of 30 clean speech signals
are sampled at 8 kHz and of 3 seconds duration each.
The clean signals are degraded by 8 different types of
noise namely airport, babble, car, exhibition, restau-
rant, station, street and suburban train at 4 differ-
ent SNR levels (0 dB, 5 dB, 10 dB and 15 dB). The
NOIZEUS-2240 and NOIZEUS-960 speech utterances
are not having subjective MOS associated with them
and thus subjective listening test was conducted to ob-
tain the subjective MOS in our laboratory. The statis-
tical analysis of the subjective MOS rating is presented
in [22] to ensure the high degree inter-and-intra-rater
reliability.

4. Results and Analysis

The Pearson’s correlation coefficient and RMSE be-
tween the subjective MOS score θ and estimated over-
all objective MOS score θ̂, both computed as condi-
tion averaged value, are used as figure of merit in most
of the literatures of single ended speech quality mea-
surement algorithms. In this work, unconditioned val-
ues of the subjective and objective MOS are also used
for the computation of Pearson’s correlation coefficient
and RMSE [8], where MOS values of speech sentence-
by-sentence are used, because it will be more realistic.
Results are given and compared in Tab. 1 for condition
averaged MOS values and Tab. 3 for unconditioned
MOS values using three databases. The comparison
of results between single time-instance [8] and multi-
ple time-instances approaches is presented along with
Recommendation ITU-T P.563. The overall weighted
average of the correlation using multiple time-instances
estimates is 0.980 as against single time-instance fea-
tures approach which is 0.960 [8], whereas the corre-
lation is 0.934 using the ITU-T Rec. P.563 algorithm
over the three databases for condition averaged MOS
case as given in Tab. 1.

In [8], on same databases 37-dimensional feature vec-
tors formed by combining 14-dimensional reduced size

Tab. 1: Correlation coefficients and RMSE between the subjec-
tive and the estimated overall objective MOS for the
condition averaged MOS case.

Data-
base

No. of
speech
utteran-

ces

ITU-T
Rec.
P.563

Proposed
model

Corre-
lation

RM
SE

Corre-
lation

RM
SE

ITU-T
Supp. 23 1328 0.815 0.450 0.966 0.168

NOIZEUS 960 0.951 0.250 0.995 0.039-960
NOIZEUS 2240 0.954 0.422 0.986 0.068-2240

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 403



INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 15 | NUMBER: 3 | 2017 | SEPTEMBER

Lyon’s auditory model features, 13-dimensional MFCC
features, and 10-dimensional LSF features, all com-
puted at single time-instance for entire speech utter-
ances are used. In this work, 53-dimensional feature
vectors formed by combining 30-dimensional reduced
size Lyon’s auditory features, 13-dimensional MFCC
features, and 10-dimensional LSF features, all com-
puted at multiple time-instances are used. The ba-
sis for dimensionality reduction of Lyon’s auditory fea-
tures using PCA from 256 to 14 in the case of sin-
gle time-instance is preservation of 98 % energy. Ac-
cording to this criterion, the dimensionality of multi-
ple time-instances Lyon’s auditory features is reduced
from 256 to 30 using PCA. Moreover, the MFCC fea-
tures are 13-dimensional and LSF features are 10-
dimensional. Thus, single time-instance feature vectors
are 37-dimensional and multiple time-instances feature
vectors are 53-dimensional.

Tab. 2: Comparison of single time-instance and multiple time-
instances features approach using equal weights with
ITU-T Rec. P.563 taking condition averaged subjective
MOS and estimated objective MOS.

Data of
Different
Expts.

No. of
Speech
Utteran-

ces

ITU-T
Rec.
P.563

Single
time-

instance
features
Lyon’s,
MFCC
& LSF

Multiple
time-

instances
features
Lyon’s
MFCC,
& LSF
with
equal
weight

Exp.1(A)
-French 176 0.885 0.912 0.967

Exp.1(D)
-Japanese 176 0.842 0.933 0.975

Exp.1(O)
-A.English 176 0.902 0.946 0.988

Exp.3(A)
-French 200 0.867 0.887 0.949

Exp.3(C)
-Italian 200 0.854 0.851 0.954

Exp.3(D)
-Japanese 200 0.929 0.908 0.948

Exp.3(O)
-A.English 200 0.918 0.891 0.961

NOIZEUS
-960 960 0.951 0.993 0.995

NOIZEUS
-2240 2240 0.955 0.980 0.985

Weighted Average 934 0.960 0.980
Std. Dev. 0.041 0.046 0.018
Confidence Interval

(95 %) 0.027 0.030 0.012

The results in terms of Pearson’s correlation coeffi-
cient and RMSE for condition averaged MOS are also
compared in Tab. 5 with the published results of re-
cent works in [13], [15] and [16] which were using a
database of 1792 speech utterances that was a subset
of NOIZEUS-2240 database of 2240 speech utterances
used in this work. The comparison is also shown by

Tab. 3: Correlation coefficients and RMSE between the uncon-
ditioned subjective MOS and the unconditioned esti-
mated overall objective MOS.

Data-
base

No. of
speech
utteran-

ces

ITU-T
Rec.
P.563

Proposed
model

Corre-
lation

RM
SE

Corre-
lation

RM
SE

ITU-T
Supp. 23 1328 0.7168 0.580 0.9233 0.335

NOIZEUS 960 0.7169 0.856 0.9180 0.277-960
NOIZEUS 2240 0.3057 0.998 0.7007 0.379-2240

Tab. 4: Comparison of single time-instances and multiple time-
instances features approach using equal weights with
ITU-T Rec. P.563 taking unconditioned subjective and
estimated objective MOS.

Data of
Different
Expts.

No. of
Speech
Utteran-

ces

ITU-T
Rec.
P.563

Single
time-

instance
features
Lyon’s,
MFCC
& LSF

Multiple
time-

instances
features
Lyon’s
MFCC,
& LSF
with
equal
weight

Exp.1(A)
-French 176 0.759 0.837 0.921

Exp.1(D)
-Japanese 176 0.701 0.828 0.934

Exp.1(O)
-A.English 176 0.790 0.828 0.956

Exp.3(A)
-French 200 0.768 0.773 0.889

Exp.3(C)
-Italian 200 0.762 0.753 0.903

Exp.3(D)
-Japanese 200 0.801 0.806 0.901

Exp.3(O)
-A.English 200 0.788 0.745 0.91

NOIZEUS
-960 960 0.717 0.859 0.918

NOIZEUS
-2240 2240 0.306 0.690 0.695

Weighted Average 0.529 0.756 0.807
Std. Dev. 0.155 0.054 0.076
Confidence Interval

(95 %) 0.101 0.035 0.050

bar graph in Fig. 4. Here, we have conducted sub-
jective listening tests to obtain the subjective MOS
for 2240 speech utterances, while in [13], [15] and [16]
they have used their own respective subjective scores.
The value of correlation reported in [13] for the condi-
tion averaged case is 0.9002 and the RMSE to be 0.33,
whereas in this proposed work the correlation obtained
is 0.986 and the RMSE to be 0.068 respectively for the
NOIZEUS-2240 database. In [15], the maximum value
of Pearson’s correlation coefficients obtained is 0.910
in test-1 which uses 8-fold cross validation process,
whereas 10-fold cross-validation process has been used
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Tab. 5: Comparison of results in terms of Pearson’s correlation
coefficient and RMSE with recently published works
[11], [13] and [14] on NOIZEUS-2240 database.

Methods Correlation RMSE
Ref [11] 0.9002 0.33

Ref [13]
Test-1

0.910
(Estimated
from given
bar chart)

0.190
(Estimated
from given
bar chart)

Test-2 0.886 194
Test-3 0.842 248

Ref [14]
Mean 0.77 0.29

Variance 0.83 0.25
Mean + Variance 0.90 0.20

Proposed Work 0.986 0.068

in this proposed work. In [16], the mean and variance
statistics of Gabor PCA features gives the best per-
formance for speech quality assessment on NOIZEUS-
2240 database. It uses 80 % of data for training and
20 % for testing. The maximum Pearson’s correlation
coefficients obtained to be 0.90 and RMSE 0.20 in [16].

Tab. 6: Comparison of results in terms of Pearson’s correlation
coefficient with recently published works [16] on ITU-T
P.Supplement-23 database.

Database
ITU-T
Rec.
P.563

Bag-of-Words
Representation

Algorithm

Multiple
time-instances

features
Lyon’s,
MFCC &

LSF
Exp.1(A)
-French 0.885 0.933 0.967

Exp.1(D)
-Japanese 0.842 0.902 0.975

Exp.1(O)
-A.English 0.902 0.949 0.988

Exp.3(A)
-French 0.867 0.925 0.949

Exp.3(C)
-Italian 0.854 0.849 0.954

Exp.3(D)
-Japanese 0.929 0.888 0.948

Exp.3(O)
-A.English 0.918 0.902 0.961

Average 0.885 0.893 0.963

The comparison of results in terms of Pearson’s cor-
relation coefficient for NOIZEUS-960 database has also
been done with [17] for condition averaged MOS, which
is the same speech database used in this work. Here, we
have conducted subjective listening tests to obtain the
subjective MOS for 960 speech utterances, while in [17]
they have used their own respective subjective scores.
The Pearson’s correlation coefficients obtained in [17]
was 0.933 as against 0.995 in this proposed work. In
[17], 70 % of data has been used for training while 30 %
for testing. The comparison of results in terms of Pear-
son’s correlation coefficient for ITU-T P. Supplement-
23 database has also been done with recent work [18] in
Tab. 6 for seven sub-databases for condition averaged
MOS values. In these comparisons, it is observed that

the proposed work performs better than these recently
published works.

5. Inferences Drawn from
Results

From the overall results expressed in tabular form
and different comparisons, the following inferences are
made:

• The multiple time-instances estimates to compute
the objective MOS score of the overall speech ut-
terance gives higher correlation as compared to the
single time-instances features approach.

• For both, the condition averaged MOS case or un-
conditioned MOS case, correlation coefficients and
RMSE are significantly better for multiple time-
instances estimates as compare to single time-
instances estimates over the different databases.

• In this algorithm, the combination of reduced size
Lyon’s auditory features with MFCC and LSF fea-
tures are used as feature vectors in the study. In
this, even there will be some duplicity of infor-
mation in the features, but the combination of
features gives better result in terms of correla-
tion and RMSE between the subjective MOS and
the estimated overall objective MOS for speech on
sentence-by-sentence basis. By combining these
feature vectors, the correlation coefficient, in both
the cases of unconditioned and condition averaged
MOS increases significantly.

6. Conclusion

Lyon’s auditory features, MFCC and LSF features are
computed for multiple time-instances for the different
combinations of multiple contiguous active speech seg-
ments. These multiple time-instances features are com-
bined for a speech utterance for single ended speech
quality measurement. The overall objective MOS of
the speech utterance is computed by assigning equal
weights (averaging) of the MOS values of the mul-
tiple time-instances estimates. The results in terms
of correlation coefficients between the subjective and
the estimated overall objective MOS for different types
of noisy speech databases are obtained and compared
with the different single time-instances approaches re-
cently published and Rec. ITU-T P.563 and found that
multiple time-instances approach outperforms.
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Fig. 4: Bar graph comparison with recent published work [11], [13] and [14].
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