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Abstract. The final step in the solution of contact
problems of elasticity by FETI-based domain decom-
position methods is the reconstruction of displacements
corresponding to the Lagrange multipliers for “gluing”
of subdomains and non-penetration conditions. The
rigid body component of the displacements is usually
obtained by means of a well known but quite complex
formula, the application of which requires reassembling
and factorization of some large matrices. Here we pro-
pose a simple formula which is applicable to many vari-
ants of the FETI based algorithms for contact problems.
The method takes a negligible time and avoids reassem-
bling or factorization of any matrices.
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1. Introduction

The FETI methods proposed by Farhat and Roux [1]
turned out to be an efficient tool for the solution of
large problems arising from the discretization of elliptic
partial differential equations. Using FETI, the domain
is partitioned into non-overlapping subdomains, an
elliptic problem with Neumann boundary conditions is
defined for each subdomain, and the inter-subdomain
field continuity is enforced via Lagrange multipliers.
The Lagrange multipliers are evaluated by solving
a relatively well conditioned dual problem of a small
size. Since the stiffness matrices of the subdomains are
typically only positive semidefinite, the formulation of

the dual problem enhances also some additional con-
straints which are associated with another set of vari-
ables that we shall call secondary multipliers. In the
classical variants of FETI for linear problems or for
small contact problems, the cost of the evaluation of
the secondary multipliers is negligible. However, if the
number of the subdomains that are used for the solu-
tion of contact problem is large, then it is not the case.
For the solution of problems the primal dimension of
which is in billions, the evaluation of the secondary
multipliers involves the products of matrices with some
hundreds of millions columns.

The point of this note is to recall that the secondary
multipliers can be obtained nearly for free if the con-
strained dual problem is solved by a mixed method
such as the method of augmented Lagrangians.

2. TFETI for Contact
Problems

Let us briefly describe a structure of the discretized
contact problem without friction. Such a problem
arises from the application of a variant of FETI
under the assumption that the kernels of the subdo-
mains are known a priori, as is always the case if the
TFETI method [2] is applied. Let us denote the sub-
domain stiffness matrices Ks, the matrices formed by
their independent rigid body modes Rs, and the sub-
domain load vectors fs, s = 1, . . . , NS . They can be
assembled into global objects

K = diag(K1, . . . , KNS ),
R = diag(R1, . . . , RNS ),
f = [(f1)T , . . . , (fNS )T ]T .

(1)
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The non-penetration and the “gluing” of subdomains
are described by the components BI and BE of the
rectangular matrix

B = [B1, . . . ,BNs ], Bs =

[
Bs

I

Bs
E

]
. (2)

The discretized primal problem with unknown dis-
placements u then reads

min
1

2
uTKu− fTu s.t. BIu ≤ o

and BEu = o.
(3)

Using the standard notation

F = BK†BT , G = RTBT ,
d = BK†f , e = RT f ,

(4)

where K† denotes a left generalized inverse of K so
that KK†K = K, we can formulate the dual problem
in Lagrange multipliers

min
1

2
λTFλ− λTd s.t. λI ≥ o

and Gλ = e.
(5)

The problem of minimization on the subset of an
affine space can be transformed into that on the sub-
set of a vector space by means of the substitution
λ = ν + λ̃, where λ̃ satisfies Gλ̃ = e. The problem
then reads

min
1

2
νTFν − νT (d− Fλ̃) s.t. νI ≥ −λ̃I

and Gν = o.
(6)

Observing that the projector

Q = GT (GGT )−1G, (7)

maps any ν which satisfies Gν = o to zero, we can use
Q and P = I−Q to modify Eq. (6) to

min
1

2
νT (PFP+ ρQ)ν − νTP(d− Fλ̃)

s.t. νI ≥ −λ̃I , TGν = o,
(8)

where ρ > 0 denotes a regularization parameter and T
a nonsingular matrix which defines the orthonormaliza-
tion of the rows of G. In what follows, we shall assume
that GGT = LLT is the Cholesky decomposition of
GGT and we can take T = L−1. For convenience, we
shall denote G̃ = TG. The (GGT )−1 action is called
Coarse Problem (CP) solution. The action time and
level of communication depend primarily on CP imple-
mentation, i.e. on the solution of GGTx = y.

If ν is a solution of Eq. (6) so that λ = ν + λ̃ is
a solution of Eq. (5), then corresponding displacements
u can be evaluated by the formula

u = K†(f −BTλ) +Rα, (9)

where

α = −(GG
T
)−1GBK†(f −BTλ),

G = RTBT ,
(10)

and the matrix B is formed by the rows of B that cor-
respond to the active constraints, i.e., to the equality
constraints and to those that satisfy λI,i > 0.

If % ≈ ‖F‖, then the condition number of the Hessian
of the cost function satisfies [3]

κ(PFP+ %Q | ImP) ≤ CH
h
, (11)

where h and H denote the discretization and decompo-
sition parameters, respectively. Let us recall Eq. (11)
was the key ingredient of early proofs of the optimality
of FETI (see Farhat, Mandel, and Roux [3] for linear
problems and Dostal et al. [4] or references in [5] for
contact problems).

3. Reconstruction Formula

Let the problem given by Eq. (8) be solved by
SMALBE algorithm (see Dostal and Horak [6] or the
book by Dostal [7]) which generates the approxima-
tions of the Lagrange multiplier µ for the equality con-
straints in the outer loop by means of the inexact so-
lutions of auxiliary bound constrained quadratic pro-
gramming problems in the inner loop by MPRGP (see
Dostal and Schoeberl [8] or the book [7]). We get the
solution ν of Eq. (8) and the corresponding multiplier
µ for the equality constraints that satisfy the KKT
condition

(PFP+ ρQ)ν = P(d− Fλ̃)− G̃Tµ. (12)

Using Pν = ν, Qν = o, and simple manipulations,
we get

−G̃Tµ = P(F(Pν + λ̃)− d) = P(Fλ− d). (13)

Let us denote

α = −(GGT )−1GBK†(f −BTλ), (14)

so that

GTα = −GT (GGT )−1GBK†(f −BTλ) =

= Q(Fλ− d).
(15)

After multiplication of Eq. (9) by B, we obtain

Bu = BK†(f −BTλ) +BRα =

= d− Fλ+GTα,
(16)

and

GTα−Bu = Fλ− d. (17)
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Let us rewrite Eq. (13), Eq. (15) and Eq. (17)

−G̃Tµ = P(Fλ− d), (18)
GTα = Q(Fλ− d), (19)

GTα−Bu = I(Fλ− d). (20)

If we sum the right hand sides of Eq. (17)
and Eq. (18) and use P+Q = I, we obtain the right
hand side of the Eq. (19). Thus

−G̃Tµ+GTα = GTα−Bu. (21)

Let us recall that G̃ = L−1G. Moreover, the nonzero
entries ofBu correspond to λI,i = 0, so the jump in the
displacements can appear only on the contact interface,
where λI,i = 0. If we take into account components
related to the sets E and I : λI,i > 0, we get the final
relation

BRL−Tµ = BR(α−α), (22)

which is valid if

L−Tµ = α−α. (23)

Thus if we have λ and µ, we can evaluate α by
Eq. (14) and α by

α = α− L−Tµ. (24)

Notice that the matrices on the right hand side of
Eq. (14) are available throughout the solution proce-
dure, while the evaluation of Eq. (10) requires effective
assembling of G. If we work with the explicit G̃, i.e.,
with assembled L−1G , then the final formula gets even
simpler form

α = α− µ. (25)

The advantage of the latter formula is that its evalu-
ation does not require the backward solve of the system
with L, which can be useful when L is not supplied by
the applied direct solution routine.

4. Numerical Experiments
Using PERMON

As a model of 3D linear elasticity contact problem,
we considered an elastic cube in contact with a rigid
obstacle decomposed into 4096, 32768 and 110592 sub-
domains.

The numerical experiments have been computed by
means of PERMON (Parallel, Efficient, Robust, Modu-
lar, Object-oriented, Numerical) [12], which is a collec-
tion of software libraries, uniquely combining QP (Per-
monQP) and Domain Decomposition Methods (DDM)
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Fig. 1: Times associated with CP solution determine costs for
α computation on ARCHER.

of FETI type (PermonFLLOP). Both modules are built
on the top of PETSc [13], mainly its linear algebra part.

They were run on a Cray XC30 based supercom-
puter ARCHER [9] operated by EPCC. It consists of
4920 compute nodes. Each compute node contains two
2.7 GHz, 12-core Intel E5-2697 v2 (Ivy Bridge) proces-
sors and at least 64 GB of memory. Compute nodes are
interconnected by the Aries interconnect using a Drag-
onfly topology. ARCHER’s Rmax is 1642.5 TFlop/s in
the Linpack benchmark.

There are several strategies for CP solution: iter-
ative, direct solution, orthonormalization of G rows
eliminating CP at all. Times required for standard
computation of the amplitudes α of rigid body modes
in the most efficient way using parallel direct solver
SuperLU_DIST on the ARCHER supercomputer are
depicted in Fig. 1. Although SuperLU_DIST was used
for the CP solution and MPI subcommunicators were
employed to decrease the communication cost of CP so-
lution (see e.g. [10] and [11]), the CP solution becomes
a bottleneck. In contrast to this, the simple substrac-
tion of two vectors takes a negligible time.

5. Conclusion

In this paper, we have introduced new efficient recon-
struction formula for the computation of rigid body
motions based on SMALBE multiplier avoiding the
modified coarse problem matrix assembling, its factor-
ization and solution. New formula results in significant
time and memory savings which increase with the ne-
cessity to reconstruct the primal solution from the dual
one repeatedly, e.g. for time dependent problems.
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