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Abstract. Standard numerical methods for solving in-
verse problems in partial differential equations do not
reflect a possible inaccuracy in observed data. How-
ever, in real engineering applications we cannot avoid
uncertainties caused by measurement errors. In the
Bayesian approach every unknown or inaccurate value
is treated as a random variable. This paper presents an
application of the Bayesian inverse approach to the re-
construction of a porosity field as a parameter of the
Darcy flow problem. However, this framework can be
applied to a wide range of problems that involve some
amount of uncertainty. Here the material field is mod-
eled as a Gaussian random field, which is expressed as
a function of several random variables. The informa-
tion about these random variables is given by the result-
ing posterior distribution, which is then studied using
the Cross-Entropy method and samples are generated
using the Metropolis-Hastings algorithm.
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1. Introduction to the
Bayesian Inversion

Consider a general inverse problem of finding a vec-
tor u ∈ Rn that satisfies an equation y = G (u) ,

where y ∈ Rm is a known vector of observed data
and G : Rn → Rm is a generally nonlinear function,
usually called the observation operator. The inverse
operator to G is unknown. In practical applications
the observed data are corrupted by noise, therefore we
consider a modified equation

y = G (u) + η, (1)

where η ∈ Rm is the observational noise, i.e. we use
a model with an additive noise. The resulting inverse
problem of finding u ∈ Rn which satisfies Eq. (1) may
have no exact solution or multiple solutions. However,
the Bayesian approach naturally overcomes these diffi-
culties.

In the Bayesian statistics the unknown vector u is
understood as a random vector. Consequently, the
objective is to find the joint probability density func-
tion (PDF) of this random vector, while y is given,
i.e. to find the conditional probability density function
π (u|y), which specifies the so called posterior distribu-
tion. According to the Bayes theorem, the posterior
distribution is defined by

π (u|y) = f (y|u)π0 (u)∫
f (y|u)π0 (u) du

, (2)

where f (y|u) indicates the data likelihood, i.e. the
PDF of y when u is given, and π0 (u) indicates the prior
distribution. In fact π0 expresses our prior belief about
the random vector u, which is then refined according
to the observed data y. An example of the relation
between these three probability density functions in
one dimension is illustrated in Fig. 1.

At this point the Bayesian approach can be applied
to the inverse problem given by Eq. (1). Let fη de-
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Fig. 1: Example of π0 (u), f (y|u) and π (u|y) for u ∈ R.

note the PDF of the observational noise η; this random
vector represents measurement errors, therefore we as-
sume that its mean is a zero vector. Consequently,
f (y|u) equals the PDF of the noise η shifted by the
vector G (u), i.e. f (y|u) = fη (y −G (u)) [2].

π (u|y) ∝ f (y|u)π0 (u) = fη (y −G (u))π0 (u) . (3)

Further notice that the relation fully specifies the
posterior distribution, therefore the aim of the follow-
ing text is to find the posterior PDF only up to a nor-
malizing constant.

2. The Gaussian Model

If the additive observational noise η represents a mea-
surement error, it is natural to expect that it
follows the normal distribution with zero mean,
i.e. η ∼ N (0,Σ), where Σ ∈ Rm×m is the covari-
ance matrix. For convenience we further assume that
Σ = γ2I(m), where I(m) ∈ Rm×m is an identity matrix
and γ2 ∈ R+, i.e. the elements of the random vector η
are independent. The data likelihood then satisfies:

f (y|u) = fη (y −G (u)) =

=
1√

(2πγ2)
m exp

(
− (y −G (u))

T
(y −G (u))

2γ2

)
.

(4)

If the observational operator G is linear, this PDF is
Gaussian, but in the general case it is not.

It is further assumed that the prior distribution of
the random vector u is also Gaussian, for simplicity u ∼
N
(
0, σ2I(n)

)
, where σ2 ∈ R+. With this assumption:

π0 (u) =
1√

(2πσ2)
n exp

(
−u

Tu

2σ2

)
. (5)

Consequently, the posterior PDF is given by:

π (u|y) ∝

∝ exp

(
− (y −G (u))

T
(y −G (u))

2γ2
− uTu

2σ2

)
.

(6)

The use of the Gaussian prior information is well
suited for porous media flow problems as the perme-
ability is usually modeled using the lognormal distribu-
tion, which can be simply expressed as an exponential
of the normal distribution. If we considered another
prior distribution, the derivation of the posterior PDF
would be similar.

If both data likelihood and prior information are
Gaussian, the posterior distribution (as their product)
is also Gaussian and it is fully specified by its mean and
covariance operator. However, in this case a general
nonlinear observation operator G is considered, there-
fore the posterior distribution is not Gaussian and its
properties must be studied differently using appropri-
ate techniques.

3. Properties of the Posterior
Distribution

The next task is to gain as much information about
the random parameters as possible from the resulting
posterior PDF.

One way of studying the posterior distribution is
through finding û ∈ Rn that maximizes the posterior
PDF. Denoting:

S (u) =
(y −G (u))

T
(y −G (u))

2γ2
+
uTu

2σ2
. (7)

We can write:

û = argmax
u∈Rn

π (u|y) = argmin
u∈Rn

S (u) . (8)

In the case of the Gaussian PDF, the value of û
equals to the mean. Generally û is the mode, i.e. the
“most probable” value of u, but it may not be uniquely
determined.

By finding the approximation of the mode we only
utilize a small portion of the information available
about the unknown material parameters. In order to
utilize all the information provided by the posterior
distribution, we can use for example the Markov Chain
Monte Carlo methods.

3.1. PDF Maximization Using
the Cross-Entropy Method

The Cross-Entropy (CE) method is based on the
Kullback-Leibler divergence minimization. Here the it-
erative CE algorithm, more specifically its variant for
continuous optimization, is applied to the problem

min
u∈Rn

S (u) . (9)
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In this case, we are not interested in the minimal value
but in the argument of the minimum. The Gaussian
distribution N

(
µ0, σ

2
0I

(n)
)
is chosen as an arbitrary

distribution. The distribution parameters µ0 and σ2
0

are updated smoothly according to selected elite sam-
ples; it converges to a degenerated distribution with
mean equal to ûCE and zero variance. The value of
ûCE is the CE approximation of the mode (or one of
the modes) û. The derivation of the algorithm is thor-
oughly explained in [3].

The iterative algorithm of the CE method works
with input parameters:

• M ∈ N (number of samples generated in each it-
eration),

• ν ∈ (0, 1) (parameter specifying the number of
elite samples, typically between 0.8 and 0.99),

• α ∈ (0, 1〉 (smoothing parameter of the mean, typ-
ically between 0.7 and 1.0),

• β ∈ (0, 1) (parameter of variance smoothing, typ-
ically between 0.8 and 0.99),

• q ∈ N (parameter of variance smoothing, typically
between 5 and 10),

• µ0 ∈ Rn (initial mean),

• σ2
0 ∈ Rn+ (initial variance).

And with the function S : Rn → R specified above.
The steps of the algorithm are as follows:

• Set t = 0.

• Generate M independent samples {X1, . . . ,XM}
from N

(
µt, σ

2
t

)
.

• Calculate

Y = {Y1, . . . , YM} = {S (X1) , . . . , S (XM )} . (10)

• Calculate γ as a (1− ν)-quantile of the set Y .

• For j ∈ {1, . . . , n} calculate the elements of the
updated parameters µt and σ2

t using the formulas

(µt)j =

M∑
i=1

I{S(Xi)≥γ}Xij

M∑
i=1

I{S(Xi)≥γ}

, (11)

and

(
σ2
t

)
j
=

M∑
i=1

I{S(Xi)≥γ}

(
Xij − (µt)j

)2
M∑
i=1

I{S(Xi)≥γ}

, (12)

where Xij denotes the j-th element of the vector
Xi. The operator I returns 1, when the state-
ments in the brackets holds; otherwise, it returns
0.

• Set βt = β − β ·
(
1− 1

t

)q and smooth the param-
eters using formulas

µt = α · µt + (1− α) · µt−1, (13)

and
σ2
t = βt · σ2

t + (1− βt) · σ2
t−1. (14)

• If the stopping condition is not fulfilled, increment
the value of t by one and continue with the step 2.

• Return ûCE = σt.

3.2. Sampling from π (u|y) Using
the Metropolis-Hastings
Algorithm

The Metropolis-Hastings (MH) algorithm belongs to
the Markov chain Monte Carlo methods, the principle
of these methods is explained e.g. in [4]. The MH
algorithm provides approximate samples from a given
PDF known up to a normalizing constant, which is
exactly this case. The method is particularly useful in
the case of high-dimensional random vectors u, see [1].
We take:

q (u, x) =

=
1√

(2πσ2
MH)

n
exp

(
− (u− x)T (u− x)

2σ2
MH

)
.

(15)

As the instrumental PDF and we can choose e.g.
u0 = ûCE or u0 = 0 as the initial state, depending
on the purpose of the simulation. The MH algorithm
for sampling from the posterior PDF π (u|y) reads as
follows:

• for t = 0, 1, . . . , T

– generate xt from q (ut, xt) and compute the
acceptance probability:

α (ut, xt) = min

{
π (xt|y) q (xt, ut)
π (ut|y) q (ut, xt)

, 1

}
, (16)

– set ut+1 = xt with probability α (ut, xt), oth-
erwise set ut+1 = ut.

The samples u1, . . . , uT are not independent, but uT is
approximately distributed according to π (u|y) for high
values of T .

We can further substitute Eq. (6) for π (·|·) in
Eq. (16) and notice that q (u, x) is symmetric, we thus
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α (ut, xt) = min

{
exp

(
‖y −G (ut)‖2 − ‖y −G (xt)‖2

2γ2
+ +

‖ut‖2 − ‖xt‖2

2σ2

)
, 1

}
. (17)

obtain a simplified formula for the acceptance proba-
bility calculation Eq. (17).

The values ‖y −G (ut)‖2 and ‖ut‖2 are not calcu-
lated again, they are known from the previous itera-
tion.

The acceptance rate α is defined as the average of the
acceptance probability α (ut, xt) over the iterations, i.e.
see [8].

α = lim
T→∞

1

T

T∑
t=0

α (ut, xt) . (18)

A high value of α indicates a high correlation between
consecutive samples and on the other hand a low value
of α means that a high number of proposed samples
xt is rejected. The value of the acceptance rate can be
adjusted by the choice of the vector σMH.

4. Application to a Gaussian
Random Field
Reconstruction

In this paper, the Bayesian inverse approach is used
for a reconstruction of a parameterized material field.
This means that the structure of the material field is
described as a function of certain number of random
variables, grouped into a random vector. The Bayesian
inversion is then used to determine the probability dis-
tribution of this random vector, according to observed
data based on a specific sample of the material field.
The principles are demonstrated on the Darcy flow
problem, but they can be used generally for the recon-
struction of parameters of different partial differential
equations.

Consider a two field form of the groundwater flow
boundary value problem on a unit square with a pre-
scribed pressure on the left and the right side and
no flow on the upper and the lower side:

v + k∇p = 0
div (v) = 0

}
in D = 〈0, 1〉 × 〈0, 1〉

p = 1 on 0× 〈0, 1〉
p = 0 on 1× 〈0, 1〉

v · n0 = 0 on 〈0, 1〉 × {0, 1} ,

(19)

where p : D → R is the pore pressure, v : D → R2

is the Darcy’s velocity, n0 is the unit outer normal to
the boundary, and k is the permeability of the material.
We consider a non-homogeneous isotropic material and
we use a model recommended in [7]. The permeability

is modeled as k = exp (φ), where φ is the porosity,
which is modeled as a Gaussian random field specified
by zero mean and the autocovariance function Eq. (20)
for details see [5].

c (x, y) = ρ2 exp

(
−‖x− y‖

λ

)
. (20)

4.1. The Direct Problem

The model problem Eq. (19) is solved by the Mixed Fi-
nite Element Method (MFEM) using the lowest order
Raviart-Thomas discretization, as described in [6]. In
the continuous case, the material was represented by
a Gaussian random field. Here the input of the direct
problem is a sample of the random vector φ̃ (defined
as a discretization of the Gaussian random field φ on
a regular N × N grid). Outputs are the discretiza-
tion p̃ of the pore pressure field and the discretization
ṽ = (ṽ1, ṽ2) of the Darcy’s velocity vector field.

The elements of the covariance matrix C ∈ RN2×N2

of the random vector φ̃ are given by Cij = c (gi, gj),
where gi and gj are grid points. In [5] we use the
Cholesky decomposition to generate the field, but for
this purpose it is preferable to use the eigenvalue de-
composition of C:

C = QΛQ−1, (21)

where Λ is a diagonal matrix with eigenvalues on
the diagonal, sorted in descending order, and Q is
a matrix with eigenvectors in columns. If we assume
u ∼ N (0, IN2), then the realization of the random vec-
tor φ̃ correlated according to C is obtained as:

φ̃ = QΛ
1
2u, (22)

where φ̃ is a sample of the discretized Gaussian random
field. The random vector u can be understood as the
input of the direct problem instead of φ̃, because the
relation between these vectors is deterministic. At this
point we can define the Bayesian inverse problem.

4.2. The Inverse Problem

We assume that p̃, ṽ1 and ṽ2 are known, presumably
only in several grid points. Let P , V1 and V2 denote
the sets of points, where the pressure and the velocity
(in certain directions), respectively, is known. There-
fore the observation operator G is given by:

G (u) =
(
p̃|P , ṽ1|V1

, ṽ2|V2

)
. (23)
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The application of this operator consists of trans-
forming the vector u into a sample φ̃ of the discretized
random field according to Eq. (22), finding the approx-
imate solution of the partial differential equation using
the MFEM, and extracting the restricted vectors p̃|P ,
ṽ1|V1

and ṽ2|V2
. Again the observed data are corrupted

by noise η. With this notation the Bayesian inverse
problem is defined as finding the posterior distribution
of the random vector u ∈ Rn (for now n = N2) that
satisfies the equation:

y = G (u) + η. (24)

The posterior distribution is defined by Eq. (6),
where σ = 1. The length of the random vector is N2

(number of all grid points), therefore sampling from
the posterior PDF by the MH algorithm or maximiz-
ing using the CE method is computationally intensive.

4.3. Dimension Reduction

The dimension of this inverse problem (number of un-
known parameters) can be decreased by neglecting
small eigenvalues and corresponding eigenvectors of the
correlation matrix C. This matrix is positive definite,
its spectrum for N = 50, ρ = 1, λ = 0.4 is shown
in Fig. 2. Therefore Q is an orthogonal matrix and
Eq. (22) can be rewritten as:

φ̃ =

N2∑
i=1

√
λiuiqi, (25)

where λi is an eigenvalue and qi is the corresponding
eigenvector; λi ≥ λj for i < j. Figure 3 shows exam-
ples of eigenvectors q14, q15 and q18 reshaped to the
square domain D. By truncating this sum to n < N2

summands, we obtain an approximation of φ̃.

0 500 1000 1500 2000 2500
10-2

100

102 eigenvalues in descending order

Fig. 2: Spectrum of C for N = 50, ρ = 1, λ = 0.4.
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Fig. 3: Examples of eigenfunctions and corresp. eigenvalues.

Let Λ(n) ∈ Rn×n and Q(n) ∈ RN2×n denote a di-
agonal matrix containing n largest eigenvalues of C
and a rectangular matrix containing the corresponding
eigenvectors, respectively. The approximation φ̃(n) of
the Gaussian random field using n eigenvectors is now
given by:

φ̃(n) =

n∑
i=1

√
λiuiqi = Q(n)

(
Λ(n)

) 1
2

u, (26)

where u ∼ N
(
0, I(n)

)
. The dimension of the in-

verse problem is thus decreased to n. The value of
n ∈

{
1, . . . , N2

}
can be understood as a parameter of

the observation operator G that also determines the
length of the studied random vector, i.e. the number
of random variables that are used to describe the ran-
domness. Therefore the notation G(n) will be used for
the observation operator in the rest of the text.

5. Numerical Experiments

For the numerical experiments the following settings
were chosen: N = 50, ρ = 1, λ = 0.4, P is a set of 100
grid points at the Neumann boundary of the domain,
V1 is a set of 100 points regularly distributed over the
domain, and V2 is empty. The sets P and V1 are il-
lustrated by the red dots in Fig. 4. The observation
operator G(n) is fully specified by these settings. At
this moment it is necessary to obtain a vector of ob-
served data y; it will be simulated and it will serve as
the vector of measurements (one of the inputs of the
Bayesian inverse problem).

(a) Pore pressure. (b) 1st coord. of velocity.

Fig. 4: The illustration of the measurements ṽ1|V1
and p̃|P be-

fore the application of the noise.

5.1. Simulated Observed Data

The covariance matrix was constructed as described in
Subsec. 4.1. A sample of the discretized Gaussian
random field was then generated according to Eq. (22).
Figure 5 shows a realization of this random vector re-
shaped to the square domain D.
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Fig. 5: Original porosity field QΛ
1
2 u used to simulate a vector

of observed data.

For this material field, the resulting vectors ṽ|V
and p̃|P were calculated using MFEM, see Fig. 4 (the
pore pressure and the first coordinate of the veloc-
ity). To obtain the simulated observed data y, the out-
put ( ṽ|V , p̃|P ) was corrupted by the additive Gaussian
noise with parameter γ = 0.05. The values of the vec-
tor y are understood as noisy measurements and they
are used for the calculation of the material parameters
probability distribution.

5.2. Bayesian Inversion

By the substitution of the standard deviations γ and
σ, the vector y, and the operator G(n) (for a given n)
into Eq. (6), we obtain the posterior PDF of the ran-
dom vector u. The dimension n of the problem can be
chosen arbitrarily. For a comparison between the non-
truncated and the truncated version of the problem,
we choose values N2, 200 and 20, respectively.

Fig. 6: Reconstructed material field calculated as QΛ
1
2 ûCE.

First the material field was described using all 2500
eigenvectors of the matrix C. The estimation û(2500)CE of
the mode of the resulting posterior distribution was cal-
culated by the CE method; 480 samples were generated
in each of 103 iterations. The values of the remaining
input parameters were set to ν = 0.975 (this corre-
sponds to 12 elite samples in each iteration), α = 0.99,
β = 0.9, q = 8, initial mean µ0 = 0, and initial variance
σ2
0 = 1. Figure 6 shows the reconstructed material field

given by û(2500)CE . Figure 7 shows the convergence of the

Fig. 7: Convergence of the CE method applied to û(2500)CE esti-
mation.

Fig. 8: Convergence of µt and σt elements corresponding to five
highest eigenvalues.

CE method and the graphs in Fig. 8 show the conver-
gence of the first 5 elements of µt and σt (corresponding
to 5 highest eigenvalues of C).

The reconstructed material fields in Fig. 9 use re-
duced number of eigenvectors for their description,
specifically n = 200 and n = 20. The vectors û(200)CE

and û
(20)
CE were calculated in 103 iterations of the CE

method, 480 samples per iteration, the other input pa-
rameters of the CE method also remained unchanged.

(a) n = 200. (b) n = 20.

Fig. 9: Reconstructed material field Q
(
Λ(n)

) 1
2 û

(n)
CE with re-

duced number of random parameters.
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The CE method was used only to estimate the mode
of the posterior PDF, a more detailed description can
be obtained by studying samples from the posterior
distribution. For n = 200 and n = 20, approximate
samples were obtained using the Metropolis-Hastings
algorithm, see Subsec. 3.2. This algorithm was exe-
cuted in three steps. In the initial run, 96 independent
Markov chains of length T = 1000 were generated in
parallel, each starting from u0 = 0. The vectors uT
were used as initial states for the second run. During
the second run of the MH algorithm, the parameter
σMH of the instrumental density q (u, x) was adjusted,
the elements of σMH were updated adaptively to attain
the acceptance rate close to α = 0.25 (respectively close
to α = 0.5) for all elements of the vector u. The av-
erage of 96 vectors of σMH was used as the parameter
of instrumental density for the final run. In the final
run, the samples were again generated in parallel using
96 independent instances of the MH algorithm, each
starting from a different initial state u0 based on the
preliminary runs.

In the case of n = 20, the adjustment of the ele-
ments of σMH (during the second run) was performed in
batches of 100 consecutive states of the Markov chain.
The acceptance rate for all of the 20 elements was esti-
mated, and according to its values, the corresponding
elements of the vector σMH were decreased or increased.
The states of the Markov chain were generated element
by element, therefore one “state” of the Markov chain
was obtained in a loop over all the 20 elements. The
graphs in Fig. 10 illustrate the changes of (σMH)1 and
related changes of the acceptance rate of the first ele-
ment of the random vector (corresponding to the high-

batch of 100 states
5 10 15 20

0.01

0.02

0.03

0.04

0.05

target acceptance rate 0.25
target acceptance rate 0.5

(a) Average value of (σMH)1.

batch of 100 states
5 10 15 20

0

0.2

0.4

0.6

target acceptance rate 0.25
target acceptance rate 0.5

(b) Average acceptance rate.

Fig. 10: Average values of (σMH)1 and corresponding accep-
tance rate during the preliminary run of the MH algo-
rithm for n = 20.

est eigenvalue) during the second run. These graphs
show the average over all of 96 instances for two target
acceptance rates α = 0.25 and α = 0.5.

The final run was performed with σMH constant,
96 Markov chains of length 10000 were generated.
The samples provided by the MH algorithm are
correlated. To obtain nearly independent samples, the
sample autocorrelation of the resulting Markov chains
was analyzed. Based on the analysis, the variant
“α = 0.5” was chosen and every 1000th state was
kept. This way the set U (20) =

{
u(20),1, . . . , u(20),K

}
of K = 960 nearly uncorrelated samples from the
posterior distribution was obtained. The states
were transformed into the corresponding mate-
rial fields using Eq. (26). Sample characteristics
of this set M (20) =

{
m(20),1, . . . ,m(20),K

}
={

Q(20)
(
Λ(20)

) 1
2 u(20),1, . . . ,Q(20)

(
Λ(20)

) 1
2 u(20),K

}
containing samples of the material field are shown
in Fig. 11, the sample mean is a vector given by
m(20) = 1

K

∑K
i=1m

(20),i and the sample standard

deviation is given by
√

1
K−1

∑K
i=1

(
m(20),i −m(20)

)2
.

Fig. 11: Sample mean (left) and sample standard deviation
(right) of the set M (20).

In the case of n = 200, the procedure was the same
except for a different batch size in the second run and
a different length of Markov chains in the final run. The
graphs in Fig. 12 show the average values of (σMH)1 and
corresponding acceptance rates for consecutive batches
of size 30. In the final run, 96 Markov chains of length
1200 were generated. Based on the analysis of the au-
tocorrelation, the variant “α = 0.25” was chosen and
every 120th state was kept, i.e. the set U (200) was
obtained. The states were transformed into the corre-
sponding material fields, the sample characteristics of
the set M (200) created this way are shown in Fig. 13.
The sample standard deviation is lower around points,
in which the velocity was measured. To illustrate this
property, these points are drawn too.

Based on the samples u(200),1, . . . , u(200),K , the pos-
terior distribution can be described in more detail. In
Fig. 14 we can observe that the sample standard de-
viation of (u)i is close to 1 for higher values of i, i.e.
close to the standard deviation of the prior PDF, while
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batch of 30 states
5 10 15 20

0.01

0.02

0.03

0.04

0.05
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(a) Average value of (σMH)1.
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Fig. 12: Average values of (σMH)1 and corresponding accep-
tance rate during the preliminary run of the MH algo-
rithm for n = 200.

Fig. 13: Sample mean (left) and sample standard deviation
(right) of the set M (200).

Fig. 14: Sample standard deviation of the set U (200).

the sample standard deviation of the components cor-
responding to high eigenvalues is lower.

The marginal distributions of the single components
of the random vector u seem to be Gaussian, but the
components are correlated. Figure 15 shows the abso-
lute value of the sample correlation matrix. We can
observe a strong correlation between some pairs of the
random vector components. The pair of the compo-
nents (u)14 and (u)15 and the pair (u)18 and (u)19 are
the most correlated. This fact is illustrated in Fig. 16
and Fig. 17. The strong correlation in these pairs is

0 50 100 150 200

0

50

100

150

200

0.25

0.5

0.75

1

Fig. 15: Sample correlation matrix absolute value.
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Fig. 16: Correlation between (u)14 and (u)15.
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Fig. 17: Correlation between (u)18 and (u)19.

given by the specific character of the pairs of the cor-
responding eigenvectors. The eigenvectors q14 and q15
are illustrated in Fig. 3.

6. Conclusions

The paper presented the Bayesian inverse approach
to material parameters estimation in the Darcy flow
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model problem. The aim of this paper was to describe
the posterior distribution of the material parameters.
In the case of this model problem, the mode and the
mean of the random material field matched and they
corresponded to the original material field. Nearly un-
correlated samples from the posterior distribution were
obtained using the MH algorithm. A lower efficiency
of this way of sampling was given by the fact that the
vast majority of the samples had to be neglected due
to the strong autocorrelation. Using the samples, it
was observed that the standard deviation of the ran-
dom material field is influenced by the position of the
domain points, where the measurements were taken.

The problem solved in this paper was specific due
to the particular choice of the material in the form of
the Gaussian random field. The framework can also be
used for a description of different uncertain parameters,
e.g. in the case of problems with given or parameter-
ized material interfaces. The measurements and the
amount of information hidden in them may also dif-
fer, mainly depending on the possibilities of a specific
engineering application.

Each sample of the CE method and also each cal-
culation of the acceptance probability during the MH
algorithm involves a solution of the direct problem (i.e.
an evaluation of the observation operator G). In this
case it means a high number of the solutions of the
Darcy flow problem using the MFEM [6]. Therefore
the current work of the authors concentrates on al-
ternative ways of solving the Darcy flow problem and
other differential equation problems with random in-
put data, e.g. using the stochastic collocation method
and the stochastic Galerkin method. These methods
require much lower computing time for the repeated
solutions of the direct problem.
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