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Abstract. This paper deals with a tensor representa-
tion of the Slater-type orbital basis functions. Localized
basis systems are primarily used in electronic structure
calculations. A choice of the system is usually limited
to Gaussian-type orbitals due to the impossibility of the
analytical evaluation of necessary integrals using other
basis types. Unfortunately, it is not possible to use di-
rect discretization techniques due to the dimensionality
of the problem so the numerical integration is problem-
atic. Tensor Numerical Methods overcome this prob-
lem by using special data representations, which are
discussed. Finally, it is demonstrated how to use these
methods to construct a tensor approximation of Slater-
type orbital basis functions including an error estimate
and its numerical verification.
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1. Introduction

In electronic structure calculations we encounter sev-
eral mathematical challenges. Most of the computa-
tions (Hartree-Fock, correlated, or those based on the
Density Functional Theory) have the following struc-
ture. They usually start with a choice of a basis system
followed by precomputing phase where integrals that
are necessary for further phases are calculated. Finally,
a non-linear eigenvalue problem or an optimization one
is solved to obtain the ground state energy of the sys-
tem. At this point the computation can be stopped or

followed by other computations to include dynamical
electronic correlation (e.g. post Hartree-Fock meth-
ods). At each part of the computation we can choose
from a variety of mathematical tools.

In case of the electronic structure of molecules most
of the standard software packages use the Gaussian-
Type basis (GTO) functions in the form:

φGTOnlm (x1, x2, x3) = N ·xn1 ·xl2 ·xm3 ·e−α(x2
1+x2

2+x2
3), (1)

with integer exponents n, l,m and a normalization con-
stant N . A main advantage of this type of basis is the
analytical integrability of the two-electron integrals∫

R3

φµ (x)φν (x)

∫
R3

φκ (y)φλ (y)
1

‖x− y‖
d3y d3x,

(2)
where φ∗ are basis functions, µ, ν, κ and λ are their
indices in a given basis set, x = (x1, x2, x3) and
y = (y1, y2, y3) are three-dimensional spatial vectors.
These integrals represent the basic ingredient of the
precomputing phase mentioned above. In recent pa-
per [1], a numerical evaluation of two-electron inte-
grals and a subsequent solution of the HF equations
is demonstrated using the GTO basis functions. Un-
fortunately, GTO basis functions behave poorly in the
area of the atomic core, so for the required accuracy
of the electronic structure calculation we have to en-
large the number of basis functions. In this paper we
discuss a way how to represent physically more appro-
priate Slater-Type Orbital (STO) basis functions that
can be used in a similar way as in [1]. The STO func-
tions can be written as

φSTO
nlm (x1, x2, x3) = N ·

(
x2

1 + x2
2 + x2

3

)n−1
2

·Ylm (x1, x2, x3) · e−α
√
x2
1+x2

2+x2
3 ,

(3)

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 314



MATHEMATICAL ANALYSIS AND NUMERICAL MATHEMATICS VOLUME: 15 | NUMBER: 2 | 2017 | JUNE

where N is a normalization constant and Ylm denotes
a real spherical harmonics in form

Ylm (x1, x2, x3) = Clm ·
Plm(x1, x2, x3)

(x2
1 + x2

2 + x2
3)

l
2

, (4)

with a normalization constant Clm and polynomial
Plm. However, these basis sets are not very popular due
to the impossibility of the analytic integration. More-
over, standard grid-based discretization and numerical
integration is too expensive from the perspective of the
time and storage demands. In practice, the STOs are
substituted by linear combination of GTOs with fixed
coefficients. This representation is known as a con-
tracted basis. Similarly to the contracted basis ap-
proximating the STOs, the Tensor Numerical Methods
(TNM) use several Gaussians to approximate an STO
function. The difference is in the way how these func-
tions are generated. Computing of contracted basis co-
efficients requires a solution of the optimization prob-
lem of fitting in a given Slater function in the sense of
least squares for each number n of representing Gaus-
sians. These coefficients can be found in many tables
(e.g. [2]), but usually with n not exceeding 6. On
the other hand, the TNM approach [3] uses a simple
quadrature formula, which produces less optimal coef-
ficients, but finding an approximation for arbitrary n is
very simple and straightforward with a guaranteed er-
ror convergence rate. Another advantage is that within
this approach we can estimate an error of ground state
energy acquired by computation with accurate STOs
using extrapolation techniques.

The paper is divided into three main sections. In
Sec. 2. we describe basic tensor formats that are
used to represent multidimensional data discretized on
very fine grids (of the order of magnitude 104−106 dis-
cretization points in one dimension). The standard full
representation of data suffers from the so called "Curse
of Dimensionality", which means that the memory de-
mands grow exponentially with the dimension of the
problem. TNM overcome this problem by representing
the data in an economical form where the space com-
plexity is linear with respect to the dimension. The sec-
tion also includes the Sinc approximation method [3]
and [4], which is used to construct a tensor-structured
representation of multidimensional data representing
discretized multivariate functions. Section 3. focuses
on STO functions and their tensor approximation by
methods described in Sec. 2. The error of the ap-
proximation is discussed as well. Section 4. includes
numerical experiments that show the accuracy and con-
firm advantages of the tensor representation. Finally,
conclusive remarks are given in Sec. 5.

2. Tensor Representation of
Data

In recent years, several important papers describing the
basic principles of TNM have been published (e.g. [1],
[5], [6] and [7]). In this section we recall some of these
principles and concepts for better readability. Consider
a real matrix A ∈ Rm×n. The matrix can be repre-
sented by its Singular Value Decomposition (SVD)

Rn×n 3 A = USVT =

R∑
i=1

σiuiv
T
i , (5)

where R is the rank of matrix A, U ∈ Rm×R and
V ∈ Rn×R are orthonormal matrices, S ∈ RR×R is
a diagonal matrix which contains singular values of A.
Storage costs for the matrix A are mn whereas the
SVD needs to store R · (m+ n+ 1) values. If the rank
R is sufficiently small, the SVD representation is more
economical.

Similar ideas can be applied to tensors. A tensor of
order d (N -d tensor) is a multidimensional array over
a d-tuple index set [1]:

A ∈ Rn1×n2×...×nd , [A]i1i2...id = ai1i2...id ∈ R. (6)

A so-called rank-R tensor A ∈ Rn1×...×nd (for sim-
plicity let’s assume, that ∀` ∈ {1, . . . , d} : n` = n) can
be written as a tensor product

A =

R∑
k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , (7)

where ck is an expansion coefficient, u(`)
k ∈ Rn is `-th

mode vector (see Fig. 1). This representation is known
as canonical R-term representation [1]. Unlike the fac-
tors of the SVD the vectors u(`)

k , k = 1 . . . R do not nec-
essarily have to be orthogonal (for a given `). A tensor
in canonical format can be stored with d·R·n numbers.
In case of low rank R this quantity is much lower than
nd. Generally, for an arbitrary tensor R may be high.
However, in many cases R can be reduced by omitting
rank-1 contributions whose expansion coefficients have
absolute values lower than a specified accuracy (anal-
ogously to the truncated SVD). This way we can get
a good memory-saving approximation of the original
tensor. Advantages of canonical representation consist
not only of low storage demands. It offers effective
evaluation of multilinear algebra operations, too. For
example, given two tensors with canonical ranks R1,
R2, the euclidean inner product, or the Hadamard (en-
trywise) product takes d ·R1 ·R2 ·n operations instead
of nd [5].

Although using the low rank canonical representa-
tion is very effective, no universal methods to calculate
it for a general arbitrary full sized tensor are known.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 315



MATHEMATICAL ANALYSIS AND NUMERICAL MATHEMATICS VOLUME: 15 | NUMBER: 2 | 2017 | JUNE

Fig. 1: Canonical representation of a given tensor A.

An alternative to the canonical representation can
be the Tucker format [6]. Given the rank parameter
r = (r1, . . . , rd) we define the orthogonal Tucker format
as:

A :=

r∑
k=1

bk1,...,kdv
(1)
k1
⊗ . . .⊗ v

(d)
kd
, (8)

where k = (k1, . . . , kd) and for any ` ∈ {1, . . . , d} the
set of vectors v

(`)
k`
, 1 ≤ k` ≤ r` is orthonormal and

coefficients bk1,...,kd form a full sized tensor B of order
d (see Fig. 2).

Fig. 2: Given tensor A in the Tucker format.

Unlike the canonical representation there exist ro-
bust algorithms for calculating a good Tucker approx-
imation of an arbitrary full sized tensor. However,
for some types of function related tensors effective
algorithms for finding a canonical approximation are
known, e.g. the Sinc approximation.

2.1. Sinc Approximation

The Sinc approximation is a robust method suitable for
finding a good canonical approximation of function-
related tensors. Consider a multivariate function u :
Rd → R that is spherically symmetrical, i.e. it depends
on ‖x‖ where x ∈ Rd. Assume that u can be written

as an integral:

u (‖x‖) =

∫
Ω

G (t) eF (t)‖x‖2dt, (9)

with
Ω ∈

{
R,R+, I

}
, (10)

where I is closed real interval and G,F : R → R. By
applying a suitable quadrature we obtain a separable
approximation:

u (‖x‖) ≈
R∑
k=1

wkG (tk) eF (tk)‖x‖2 =

=

R∑
k=1

wkG (tk)

d∏
`=1

eF (tk)x2
`

, (11)

with quadrature weights wk. To get a discrete canon-
ical approximation of u on a domain [−a, a]d we just
have to represent each one-dimensional discretized in-
terval [−a, a] as a vector y` ∈ Rn. Then the canonically
represented tensor approximating discretized function
u can be written as:

U =

R∑
k=1

cka
(1)
k ⊗ . . .⊗ a

(d)
k , (12)

where
ck = wkG (tk) , (13)

and [
a`k
]
i

= eF (tk)([y`]
i
)
2

, i = 1 . . . n. (14)

The Sinc-quadrature is based on the interpolation by
the Sinc function

Sk,h (t) =
sin
(
π(t−kh)

h

)
π(t−kh)

h

, k ∈ Z, h ∈ R+. (15)

A Sinc interpolant is defined as:

Cf,h (t) =

∞∑
k=−∞

f (kh)Sk,h (t) , (16)

for functions f from the Hardy space ∈ H1 (Dδ) [6].
The Hardy spaceH1 (Dδ) is defined as a set of functions
that are holomorphic on the strip

Dδ = {z ∈ C : −δ < Imz < δ} , (17)

with a given δ ∈
(
0, π2

)
and

∞∫
−∞

|f (x+ iδ)|+ |f (x− iδ)| dx <∞. (18)

For f ∈ H1 (Dδ) the integral

I (f) =

∫
R

f (t) dt, (19)
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can be well approximated by an integral of Sinc inter-
polant, i.e.

I (f) ≈
∫
R

Cf,h (t) dt = h

∞∑
k=−∞

f (kh) . (20)

For practical use the sum has to be truncated, i.e.

∞∑
k=−∞

f (kh) ≈
M∑

k=−M

f (kh) , M ∈ N. (21)

The estimate of error of such approximation is given
by the following theorem [4].

Theorem 1. Let f ∈ H1 (Dδ). If f satisfies

|f (x)| ≤ Ce−b|x| ∀x ∈ R with C, b > 0, (22)

then there exists a constant C1 depending on f, δ and
α such that∣∣∣∣∣∣

∫
R

f(x)dx− h
M∑

k=−M

f (kh)

∣∣∣∣∣∣ ≤ C1e
−
√

2πδbM , (23)

with

h =

√
2πδ

bM
. (24)

3. Canonical Representation of
STO Functions

Let’s have a look at the approximation of STO func-
tions. For simplicity the STO function Eq. (3) can be
rewritten as:

φSTO
nlm (x1, x2, x3) = N ·

(
x2

1 + x2
2 + x2

3

)n−l−1
2

·Ỹlm (x1, x2, x3) · e−α
√
x2
1+x2

2+x2
3 ,

(25)

where Ỹlm does not contain the denomina-
tor

(
x2

1 + x2
2 + x2

3

) l
2 . Our goal is to find sat-

isfactory approximations of the exponential
function e−α

√
x2
1+x2

2+x2
3 , the radial function(

x2
1 + x2

2 + x2
3

)n−l−1
2 and the modified spherical

harmonics Ỹlm (x1, x2, x3).

3.1. Approximation of the
Exponential Function

For the exponential function e−α‖x‖ there exists an in-
tegral representation (based on the Laplace transform),

e−α‖x‖ =
α

2
√
π

∞∫
0

t−
3
2 e−

α2

4t −t‖x‖
2

dt. (26)

Let us denote g(t) the restriction of the integrand to
‖x‖ = 0, i.e.

g (t) = t−
3
2 e−

α2

4t , t ≥ 0. (27)

For this function, it is not straightforward to find
a suitable quadrature. The problem is that behavior
of g(t) strongly depends on parameter α. Especially for
larger values of α the function converges very slowly to
0 as t goes to infinity (see Fig. 3) so the choice of
α-independent quadrature is not possible.

0 5 10 15 20 25 30

t

0

0.005

0.01

0.015

0.02

0.025

g(t)

Fig. 3: Graph of function g with α set to 5.

This problem can be solved by substitution

t =
α2

2
eu, (28)

so we can rewrite integral Eq. (26) as:

e−α‖x‖ =

∞∫
−∞

1√
2π
e−

1
2 (u+e−u)e−

1
2α

2eu‖x‖2du. (29)

This representation is more appropriate than
Eq. (26). First, if we look at the restriction of inte-
grand to ‖x‖ = 0, i.e.

g (u) =
1√
2π
e−

1
2 (u+e−u), (30)

we can see that it does not depend on α. Moreover,
it can be easily shown that g(u) reaches its maximum
at u = 0. These properties facilitate a good choice of
quadrature points.

To make an error estimation we use Thm. 1. First,
we have to show that integrand of Eq. (29) as a function
of u belongs to the Hardy space H1 (Dδ) independently
of ‖x‖ and α. Let’s define complex function

f (z) =
1√
2π
e−

1
2 (z+e−z)e−

1
2α

2ez‖x‖2 , (31)
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(now, we understand ‖x‖ and α as parameters). Func-
tion f is evidently holomorphic on C, so it is holomor-
phic on Dδ for arbitrary δ. Now we will check condi-
tion Eq. (18). Let’s find an upper bound for integral
Eq. (18). Function f satisfies:

|f (t+ iδ)| = |f (t− iδ)| =

=
1√
2π
e−

1
2 (t+e−t cos δ+α2‖t‖2et).

(32)

For the right hand side of Eq. (32) we can easily find
an upper bound

1√
2π
e−

1
2 (t+e−t cos δ+α2‖t‖2et) ≤ 1√

2π
e−

1
2 (t+e−t cos δ).

(33)

By choosing δ = π
3 we can estimate integral Eq. (18)

by:
∞∫
−∞

2√
2π
e−

1
2 (t+ 1

2 e
−t)dt = 2

√
2 <∞. (34)

We have proven that f ∈ H1
(
Dπ

3

)
, so now, using

Thm. 1, we can make an error estimate of the Sinc
approximation. It can be easily shown that

|f (t)| ≤ 1√
2π
e−

1
2 |t|, t ∈ R. (35)

If we use the quadrature step

h =

√
4π2

3M
, (36)

the error of the Sinc-quadrature can be estimated as:∣∣∣∣∣∣
∫
R

f(x)dx− h
M∑

k=−M

f (kh)

∣∣∣∣∣∣ ≤ C1e
−
√
π2M

3 , (37)

where C1 > 0 is a real constant that does not depend
on ‖x‖ or α. This estimate will be checked against
numerical experiments in Sec. 4.

3.2. Approximation of the Radial
Function

The radial function can be written as:

ra (x) = ‖x‖a =

(√
x2

1 + x2
2 + x2

3

)a
, (38)

where a = n − l − 1. First, assume that a = 2. Then,
the radial function can be written as:

r2 (x1, x2, x3) = x2
1 + x2

2 + x2
3. (39)

Finding a canonical representation of discretization
of r2 is straightforward. It can be simply written as:

R2 = z(1) ⊗ i(2) ⊗ i(3) + i(1) ⊗ z(2) ⊗ i(3)+
+i(1) ⊗ i(2) ⊗ z(3),

(40)

where i(`) is vector of ones and
[
z(`)
]
i

=
([
y`
]
i

)2. The
canonical rank of the tensor R2 is equal to 3. Now
for an arbitrary even exponent a = 2k, k ∈ N, we can
simply find a canonical representation by computing
the k-th power of R2 (in the Hadamard sense), i.e.

R2k = R2 � · · · �R2︸ ︷︷ ︸
k−times

, (41)

so the canonical rank is equal to 3k. In case of odd
exponent a = 2k − 1, the situation is a little more
complicated. We have to represent our function as:

r2k−1 (x) =
1

‖x‖
‖x‖2k . (42)

For the first term of the r.h.s. of Eq. (42) (so called
Newton potential) 1

‖x‖ we can find a good approxima-
tion using the Sinc-quadrature applied to the following
formula [6]:

1

‖x‖
=

∞∫
0

2√
π
e−t

2‖x‖2dt. (43)

Similarly to the exponential function, there can be
shown an exponential convergence of the error. A
resulting canonical rank of R2k−1 is equal to 3kRN ,
where RN is the canonical rank of the Newton poten-
tial approximation.

3.3. Canonical Representation of
Modified Spherical Harmonics

The canonical representation of Ỹlm is straightforward.
It can be made analogously to the radial function with
α = 2. If we look at the table of spherical harmonics
[8], we can observe that their canonical rank does not
exceed 6 for l ≤ 4 (i.e. including s,p,d,f,g orbitals,
without g orbitals the canonical rank does not exceed
3).

3.4. Reduction of Rank

Although the canonical rank of each part is quite low,
the total canonical rank is equal to the product of those
ranks. Too high ranks can negatively affect the com-
putational effectiveness. There are two ways how to
overcome this problem. One, physically less correct
way is to simplify the STO functions. Instead of ra-
dial function and spherical harmonics we can consider
(similarly to GTOs) powers of spatial coordinates only,
i.e.

φSTO-S
ijk (x1, x2, x3) = N ·xi1·x

j
2·xk3 ·e−α

√
x2
1+x2

2+x2
3 . (44)
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In this case, the total canonical rank is equal to the
rank of the exponential function approximation. Un-
fortunately, in this form we have to consider more basis
functions due the lower physical correctness. Another
option is to use the original Slater functions, but ex-
pressed in terms of a high rank canonical representa-
tion and subsequently simplified via a rank-reduction
algorithm. One of such algorithms is called The Best
Tucker Approximation (C_BTA). Roughly described,
the algorithm consists of the following steps:

• conversion of canonically-represented tensor to the
Tucker format with the core tensor represented in
the canonical format,

• optimization of the Tucker approximation using
the least square algorithm,

• return to the canonical representation with the re-
duced rank.

For more details about algorithm see e.g. [7].

4. Numerical Results

In this section, we will show the results of numerical
experiments. The error estimate of the Sinc approxi-
mation of the exponential function is verified. An in-
dependence of the error on α is also discussed. Finally,
an error dependence of the tensor approximation of a
selected STO function on the canonical rank is shown.

4.1. Error of the Sinc Approximation
of the Exponential Function

First, we are going to verify the error estimate given
by Eq. (37). The quadrature step h is generated by
formula Eq. (36). Figure 4 shows the dependence of
the error on the canonical rank of the approximating
tensor. The error is measured as the maximum of the
difference between the analytical formula Eq. (25) with
α = 1, n = 1, l = m = 0 and the Sinc approximation.
Furthermore, it shows the theoretical error estimate
given by formula Eq. (37) where C1 has been adjusted
to 1.2.

We can see that the error estimate is correct. Table 1
shows experimentally determined values of C1 for given
values of α. We can see that the estimate C1 = 1.2 is
independent on α which corresponds to the theory.

Tab. 1: Experimentally determined minimal values of C1 for
different values of α.

α 0.01 0.1 0.5 1 2 100
C1 0.9947 1.1692 1.1692 1.1692 1.1683 1.0091
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 e
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Error estimate
Measured error

Fig. 4: Comparison of the error estimation and the measured
error of the Sinc approximation of the exponential func-
tion.

Although we have a quadrature step with a theo-
retical (and numerically tested) error estimate, we use
an alternative way for generating the quadrature be-
cause of better convergence properties. It is based
on the observation that function g (u) given by for-
mula Eq. (30) rapidly and monotonously converges to
0 as u goes to ±∞. It means that an integration over
a fixed interval [umin, umax] well approximates the in-
tegral over R. For example by setting umin = −3.1938
and umax = 26.0010 we get

umax∫
umin

g (u) du ·= 0.999997 ≈ 1

∫
R

g (u) du. (45)

So our strategy is to distribute the quadrature points
equidistantly over the interval [umin, umax]. Figure 5
shows the dependence of the error on the canonical
rank of the approximating tensor compared to the the-
oretical error estimate related to the original quadra-
ture.

We can see that for a small values of the canoni-
cal rank the error is larger than in case of the original
quadrature. However, the decrease of the error is sig-
nificantly faster. Furthermore, we can notice that the
error decreases up to the canonical rank value 40–50,
then it stagnates. This is not surprising, because the
integration over the finite interval has a limited ac-
curacy. The essential fact is that using the original
quadrature an adequate order of error can be achieved
at canonical rank values greater than 100.

Using the quadrature step given by formula Eq. (36)
the error estimate does not depend on α. Unfor-
tunately, for an alternative quadrature we have no
proof of independence on α. However, numerical tests
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Fig. 5: The Sinc approximation error of the exponential func-
tion using the alternative quadrature.

showed that in this case the error is practically inde-
pendent on α.

4.2. Error of the Sinc
Approximation of the STO

To approximate the STO function we have to com-
bine the Sinc approximation of the exponential func-
tion with the Sinc approximation of the radial function
and with the spherical harmonics. The combination
is realized via the Hadamard product so the resulting
canonical rank is equal to the product of ranks of in-
dividual contributions. The test has been performed
on STO function with parameters α = 0.1, n = 1,
l = m = 0, i.e.

φSTO
100 (x1, x2, x3) = N ·

√
1

4π ·

·
(
x2

1 + x2
2 + x2

3

) 1
2 · e−

√
x2
1+x2

2+x2
3 .

(46)

Canonical ranks of both Sinc approximations were
generated from a parameter r ∈ N as

RankEXP = r,RankRAD = 3r, (47)

for preserving a balance of errors of both contributions.
The absolute error dependence of the tensor approxi-
mation on the parameter r is shown on Fig. 6. The
error is measured in the same way as in Subsec. 4.1.

Similarly to the exponential function we can see the
exponential convergence rate. It should be noted that
the total canonical rank is equal to 3r2, which might
be too high for practical use. However, the rank can be
reduced by discarding rank-1 updates with coefficients
ck lower than some accuracy limit and/or by using the
reduction algorithm mentioned in Subsec. 3.4.
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Fig. 6: Dependence of error of the approximation of the STO
function on parameter r.

5. Conclusion

In this paper, we have discussed a tensor representa-
tion of STO functions using the Sinc approximation
method. In case of the exponential function the de-
pendence of the error on the canonical rank has been
shown. An exponential convergence rate of the er-
ror provides a good usability of the approximation of
the exponential function at low values of the canon-
ical rank. Especially, it can be used for the canoni-
cal representation of the STO basis functions. These
basis functions are included in a currently developed
Hartree-Fock module. Currently we are working on
extensions of our module. A tensor approximation of
STO functions can be understood as a first step to-
wards more complicated bases such as hydrogen-like or-
bitals or even non-localized system independent tensor
product bases constructed from 1D basis functions (e.g.
polynomials, trigonometric functions or wavelets). Op-
erations performed on tensor-structured data require
using of high performance computing infrastructures.
Therefore, they need to be effectively parallelized. The
ultimate goal of the present research is to extend the
use of tensor methods beyond the limits of the HF ap-
proximation to the realm of correlated and DFT cal-
culations.

Acknowledgment

This work was supported by The Ministry of Educa-
tion, Youth and Sports from the National Programme
of Sustainability (NPU II) project "IT4Innovations ex-
cellence in science - LQ1602", by Grant of SGS No.
SP2016/108 and SP2016/157, VSB–Technical Univer-
sity of Ostrava, Czech Republic.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 320



MATHEMATICAL ANALYSIS AND NUMERICAL MATHEMATICS VOLUME: 15 | NUMBER: 2 | 2017 | JUNE

References

[1] KHOROMSKAIA, V and B. N. KHOROMSKIJ.
Tensor numerical methods in quantum chem-
istry: from Hartree–Fock to excitation ener-
gies. Physical Chemistry Chemical Physics. 2015,
vol. 17, iss. 47, pp. 31491–31509. ISSN 1463-9076.
DOI: 10.1039/C5CP01215E.

[2] HEHRE, W. J., R. F. STEWART and J. A.
POPLE. Self Consistent Molecular Orbital Meth-
ods. I. Use of Gaussian Expansions of Slater
Type Atomic Orbitals. The Journal of Chemi-
cal Physics. 1969, vol. 51, iss. 6, pp. 2657–2664.
ISSN 0021-9606. DOI: 10.1063/1.1672392.

[3] HACKBUSCH, W., B. N. KHOROMSKIJ and
J. A. POPLE. Tensor-Product Approximation to
Multidimensional Integral Operators and Green’s
Functions. SIAM Journal on Matrix Analysis and
Applications. 2008, vol. 30, iss. 3, pp. 1233–1253.
ISSN 0895-4798. DOI: 10.1137/060657017.

[4] STENGER, F. Numerical methods based on
Sinc and analytic functions. 1st ed. New
York: Springer-Verlag, 1993. ISBN 35-409-4008-1.

[5] KHOROMSKAIA, V., B. N. KHOROMSKIJ
and R. SCHNEIDER. Tensor-Structured Fac-
torized Calculation of Two-Electron Integrals
in a General Basis. SIAM Journal on Scientific
Computing. 2013, vol. 35, iss. 2, pp. A987–
A1010. ISSN 1064-8275. DOI: 10.1137/120884067.

[6] KHOROMSKIJ, B. N. Structured Rank-(r1,. . . ,
rd) Decomposition of Function-related Tensors in
R_D. Computational Methods in Applied Math-
ematics. 2006, vol. 6, iss. 2, pp. 194–220.
ISSN 1609-4840. DOI: 10.2478/cmam-2006-0010.

[7] KHOROMSKIJ, B. N. and V. KHOROM-
SKAIA. Multigrid Accelerated Tensor Approx-
imation of Function Related Multidimensional
Arrays. SIAM Journal on Scientific Computing.
2009, vol. 31, iss. 4, pp. 3002–3026. ISSN 1064-
8275. DOI: 10.1137/080730408.

[8] CHISHOLM, C. D. H. Group theoretical tech-
niques in quantum chemistry. 1st ed. New
York: Academic Press, 1976. ISBN 01-217-2950-
8.

About Authors

Martin MROVEC was born in Ostrava, Czech
Republic. He received his M.Sc. in Computational
mathematics in 2015. Currently he is a Ph.D. student
at VSB–Technical University of Ostrava, Faculty of
Electrical Engineering and Computer Science, De-
partment of Applied Mathematics. He also works as
a Research Assistent at the IT4Innovations – National
Supercomputing Centre. His research interests include
mathematical methods in quantum chemistry.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 321

http://doi.org/10.1039/C5CP01215E
http://doi.org/10.1063/1.1672392
http://doi.org/10.1137/060657017
http://doi.org/10.1137/120884067
http://doi.org/10.2478/cmam-2006-0010
http://doi.org/10.1137/080730408

	Introduction
	Tensor Representation of Data
	Sinc Approximation

	Canonical Representation of STO Functions
	Approximation of the Exponential Function
	Approximation of the Radial Function
	Canonical Representation of Modified Spherical Harmonics
	Reduction of Rank

	Numerical Results
	Error of the Sinc Approximation of the Exponential Function
	Error of the Sinc Approximation of the STO

	Conclusion

