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Abstract. The classical convergence theory of the aug-
mented Lagrangian method has been developed under
the assumption that the solutions satisfy a constraint
qualification. The point of this note is to show that
the constraint qualification can be limited to the con-
straints that are not enforced by the Lagrange multi-
pliers. In particular, it follows that if the feasible set
is non-empty and the inequality constraints are convex
and separable, then the convergence of the algorithm
is guaranteed without any additional assumptions. If
the feasible set is empty and the projected gradients of
the Lagrangians are forced to go to zero, then the it-
erates are shown to converge to the nearest well posed
problem.
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1. Introduction

We are interested in the minimization of a convex
quadratic function subject to possibly nonlinear sepa-
rable convex inequality constraints and linear equality
constraints

min
x∈ΩSE

f(x), f(x) =
1

2
xTAx− xTb, (1)

where
ΩE = {x ∈ Rn : Bx = o},

ΩS = {x ∈ Rn : hi(xi) ≤ 0,xi ∈ Rni ,
i = 1, . . . , s},

ΩSE = ΩE ∩ ΩS ,

(2)

b ∈ Rn, hi are differentiable and convex functions,
A is an n× n Symmetric Positive Definite (SPD) ma-
trix, and B ∈ Rm×n, B 6= O. If not specified other-
wise, we assume ΩSE 6= ∅ and admit dependent rows of
B, but we do not require that B is a full column rank
matrix, so that KerB 6= {o}. Observe that some more
general Quadratic Programming (QP) or QCQP prob-
lems can be reduced to Eq. (1) by duality, a suitable
shift of variables, or by a modification of f . The prob-
lem arises in the solution of many engineering prob-
lems, e.g., in the design of electromagnetic brakes [16]
or contact mechanics [13].

Here we restrict our attention to the Augmented
Lagrangian method (also called the method of mul-
tipliers) proposed by Hestenes (see [19]) and Powell
(see [21]) for the solution of nonlinear optimization
problems with equality constraints. The algorithms
can be considered as a modification of the exterior
penalty method which enables to reduce the original
equality constrained problem to the series of uncon-
strained problems without increasing the penalty pa-
rameter to infinity. The algorithm is described, e.g., in
the classical monographs [3] and [18].

It has been soon observed that the algorithm is useful
also for the solution of more general problems, such as
the problems with bound and equality constraints. An
important instance of such approach was used by Conn,
Gold, and Toint (see [6]) in their software LANCELOT
(see [7]). An up to date description of the general algo-
rithm can be found in [4]. We are interested in a mod-
ification of the algorithm called SMALSE-M (Semi-
monotonic Augmented Lagrangians for Separable and
Equality Constraints). Unlike the LANCELOT, it uses
the adaptive precision control introduced by [11] and
keeps the regularization parameter constant (see [10],
or [9]). The algorithm was proved to generate the iter-
ates with the feasibility error and projected gradients
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converging to zero (see [12] or [15]). Though some kind
of optimality has been proved for SMALSE-M, no proof
of convergence of the iterates themselves was given.

Our main goal here is to show that the iterates gen-
erated by SMALSE-M converge to the solution with-
out assuming any constraint qualification and to prove
the convergence of the Lagrange multipliers under the
assumption of the regularity of the solution. Let us
recall that the optimality properties of SMALSE-M
were exploited in the development of scalable algo-
rithms for the solution of contact problems with fric-
tion [13] and [14]. If the feasible set is empty and the
projected gradients of the Lagrangians are forced to go
to zero, then the iterates of a slightly modified algo-
rithm are shown to converge to the solution of a near-
est well posed problem. Notice that a similar results
were obtained by Gilbert and Chiche [5] or Gilbert and
Joannopoulis [17]. The paper is an extension of the re-
sults that appeared in [14].

2. KKT Conditions

Since ΩSE is closed, convex and nonempty and f is
assumed to be strictly convex, the solution of problem
Eq. (1) exists and is necessarily unique ([9], Propo-
sition 2.5). If the intersection of ΩSE with the inte-
rior of ΩS is nonempty, then the solution satisfies the
Slater constraint qualification and can be characterized
by means of the augmented Lagrangian

L(x, λ, µ, %) =
1

2
xTAx− xTb + xTBTλ+

+
%

2
‖Bx‖2 +

s∑
i=1

µihi(xi),

λ ∈ Rm, µ ∈ Rs,

(3)

whose gradient reads

∇xL(x, λ, µ, %) = (A + %BTB)x− b + BTλ+

+

s∑
i=1

µi∇hi(xi).
(4)

If the solution satisfies the Slater constraint qualifica-
tion, then a feasible vector x ∈ ΩSE is a solution of
Eq. (1) if and only if there is λ ∈ Rm and µ ∈ Rs such
that

∇xL(x, λ, µ, %) = o, µi ≥ 0,

and µihi(xi) = 0, i = 1, . . . , s.
(5)

Having effective algorithms for the solution of QCQP
problems with separable constraints, it is convenient
to use explicitly the Lagrange multipliers only for the
equality constraints, i.e., to use

L(x, λ, %) =
1

2
xTAx− xTb + xTBTλ+

%

2
‖Bx‖2, (6)

and the gradient g = ∇xL of the reduced augmented
Lagrangian g = g(x, λ, %) defined by

g(x, λ, %) = (A + %BTB)x− b + BTλ. (7)

To simplify the notation, we use

g = g(x) = g(x, λ, %), (8)

when we can specify the remaining arguments from the
context.

To rewrite the KKT conditions Eq. (5) in a form
suitable for our exposition, we introduce some auxiliary
notations. Let S denote the set of all indices of the
constraints so that

S = {1, 2, . . . , s}. (9)

For any x ∈ Rn, we define the active set of x by

A(x) = {i ∈ S : hi(xi) = 0}. (10)

Its complement

F(x) = {i ∈ S : hi(xi) 6= 0}, (11)

is called a free set. For x ∈ ΩS , we define the outer
unit normal n by

ni = ni(x) =

=

{
‖∇hi(xi)‖−1∇hi(xi) for i ∈ A(x),

o for i ∈ F(x).

(12)

The components of the gradient that violate the
KKT conditions Eq. (5) in the free and active set are
called the free gradient ϕ and the chopped gradient β,
respectively. They are defined by

ϕi(x) = gi(x) for i ∈ F(x), (13)
ϕi(x) = o for i ∈ A(x), (14)
βi(x) = o for i ∈ F(x), (15)
βi(x) = gi(x)− (nT

i gi)
−ni for i ∈ A(x), (16)

where we use the notation (nT
i gi)

− = min{nT
i gi, 0}.

If we define the projected gradient by

gP (x) = ϕ(x) + β(x), (17)

it is easy to check that x ∈ ΩSE is a solution of Eq. (1)
if and only if there is λ ∈ Rm such that

gP (x, λ, %) = o. (18)

We shall need yet another simple property of the
projected gradient.
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Lemma 1. Let x,y ∈ ΩS and g = ∇xL(x, λ, %). Then

gT (y − x) ≥ (gP )T (y − x). (19)

Proof: First observe that

gT (y − x) = (g − gP )T (y − x) + (gP )T (y − x). (20)

Using the definition of the projected gradient, we get

(g − gP )T (y − x) =

=
∑
i∈S

(gi − gP
i )T (yi − xi) =

=
∑

i∈A(x)

(nT
i gi)

−nT
i (yi − xi).

(21)

To finish the proof, it is sufficient to observe that for
i ∈ A(x)

nT
i (yi − xi) ≤ 0 (22)

due to the convexity of hi. �

3. SMALSE-M

The complete SMALSE-M algorithm reads as follows.

In Step 1 we can use any algorithm for minimizing
a strictly convex quadratic function subject to separa-
ble constraints as long as it guarantees the convergence
of the projected gradient to zero. The next lemma
recalls that Alg. 1 is well defined. Typical choice of
parameters is ηk = 0.1‖b‖, β = 0.1, M0 = 10, and
% = ‖A‖.

Lemma 2. Let M > 0, λ ∈ Rm, η > 0,
% ≥ 0, and α ∈ (0, 2(‖A + %BTB‖2)−1) be given.
Let {yk} ∈ ΩS denote any sequence such that

ŷ = lim
k→∞

yk = arg min
y∈ΩS

L(y, λ, %), (26)

and gP (yk, λ, %) converges to the zero vector. Then
{yk} either converges to the unique solution x̂ of prob-
lem Eq. (1), or there is an index k such that

‖gP (yk, λ, %)‖ ≤ min{M‖Byk‖, η}. (27)

Proof: If Eq. (27) does not hold for any k, then

‖gP (yk, λ, %)‖ > M‖Byk‖, (28)

for any k. Since gP (yk, λ, %) converges to the zero vec-
tor by the assumption, it follows that ‖Byk‖ converges
to zero. Thus Bŷ = o and

gP (ŷ, λ, %) = o. (29)

Algorithm 1 Semimonotonic augmented Lagrangians
for separable and equality constrained QCQP problems
(SMALSE-M).

Given an SPD matrix A ∈ Rn×n, B ∈ Rm×n,
n-vector b, constraints h.

Step 0. {Initialization.}
Choose η ≥ ηk > 0, 0 < β < 1, M0 > 0, % > 0,
λ0 ∈ Rm

for k = 0, 1, 2, . . . do
Step 1. {Inner iteration.}
Find xk ∈ ΩS such that

‖gP (xk, λk, %)‖ ≤ min{Mk‖Bxk‖, ηk} (23)

Step 2. {Updating the Lagrange multipliers.}

λk+1 = λk + %Bxk (24)

Step 3. {Update of M .}
if k > 0 and Mk−1 = Mk and

L(xk, λk, %) < L(xk−1, λk−1, %) +
%

2
‖Bxk‖2 (25)

then
Mk+1 = βMk

else
Mk+1 = Mk

end if
end for

Thus ŷ satisfies the KKT conditions Eq. (18) and
ŷ = x̂. �

The tools used for the analysis of SMALSE-M were
sufficient to prove only the convergence of the feasibil-
ity error and the projected gradient [12]. The results
relevant for our exposition read as follows.

Proposition 1. Let {xk}, {λk}, and {Mk} be gen-
erated by Alg. 1 for the solution of Eq. (1) with
η > 0, 0 < β < 1, M0 > 0, % > 0, and λ0 ∈ Rm.
Let λmin denote the smallest eigenvalue of the Hessian
A of the cost function f , and let p ≥ 0 denote the
smallest integer such that βp% ≥ M2

0 /λmin. Then the
following statements hold:
(i) Mk satisfies

Mk ≥ min{M0, β
√
%λmin}, k = 0, 1, 2, . . . . (30)

(ii) If ΩSE 6= ∅, then

lim
k→∞

gP (xk, λk, %) = o and lim
k→∞

Bxk = o. (31)
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4. Boundedness

The first step toward the proof of convergence of our
SMALSE-M Alg. 1 is to show that the iterates xk are
bounded.

Proposition 2. Let {xk} and {λk} be generated
by Alg. 1 for the solution of Eq. (1) with η > 0,
0 < β < 1, M0 > 0, % > 0, and λ0 ∈ Rm. For each
i ∈ {1, . . . , s}, let Ii denote the indices of the compo-
nents of xi, where xi is the argument of the constraint
function hi, and let us define

Ã(x) = ∪i∈A(x)Ii, F̃(x) = S \ Ã(x),

xA = xÃ(x), xF = xF̃(x).
(32)

Assume that the boundary of ΩS is bounded, i.e., there
is C > 0 such that for any x ∈ ΩS

‖xA(x)‖2 ≤ C. (33)

Then {xk} is bounded. Moreover, if the solution of
Eq. (1) is regular, then also {λk} is bounded.

Proof: Since there is only a finite number of different
subsets F of the set of all indices S = {1, . . . , s}, and
{xk} is bounded if and only if {xk

F} is bounded, we can
restrict our attention to the analysis of infinite subse-
quences {xk

F : F̃(xk) = F} that are defined by the
nonempty subsets F of S.

Let F ⊆ S, F 6= ∅, let K = {k : F̃(xk) = F} be
infinite, and denote

A = S \ F , H = A + %BTB. (34)

We get

gk = g(xk, λk, %) = Hxk + BTλk − b, (35)

and [
HFF BT

∗F
B∗F O

] [
xk
F
λk

]
=

=

[
gk
F + bF −HFAxk

A
B∗Fxk

F

]
.

(36)

Since for k ∈ K

B∗Fxk
F = Bxk −B∗Axk

A,

‖gk
F‖ = ‖gF (xk, λk, %)‖ ≤ ‖gP (xk, λk, %)‖,

(37)

and both ‖gP (xk, λk, %)‖ and ‖Bxk‖ converge to zero
by the definition of xk in Step 1 of Alg. 1 and Eq. (31),
the right-hand side of Eq. (36) is bounded. Since HFF
is nonsingular, it is easy to check that the matrix of
the system Eq. (36) is nonsingular when B∗F is a full
row rank matrix. It simply follows that both {xk} and

{λk} are bounded provided the matrix of the system
Eq. (36) is nonsingular.

If B∗F is not a full row rank matrix, then its rank r
satisfies r < m, and by the singular value decomposi-
tion formula there are orthogonal matrices

U = [u1, . . . ,um] ∈ Rm×m,

V = [v1, . . . ,vs] ∈ Rs×s,
(38)

and the diagonal matrix

Σ = diag(σ1, . . . , σr, 0, . . . , 0), Σ ∈ Rm×s, (39)

with the nonzero diagonal entries σ1 > 0, . . . , σr > 0
such that B∗F = UΣVT . Taking

Û = [u1, . . . ,ur], Σ̂ = diag(σ1, . . . , σr),

and V̂ = [v1, . . . ,vr],
(40)

we have B∗F = ÛD̂V̂
T

and we can define a full row
rank matrix

B̂∗F = D̂V̂
T

= ÛTB∗F , (41)

that satisfies for any vector x

B̂T
∗FB̂∗F = BT

∗FB∗F and

‖B̂∗FxF‖ = ‖B∗FxF‖.
(42)

We shall assign to any λ ∈ Rm the vector λ̂ = ÛTλ,
so that B̂T

F λ̂ = BT
Fλ. Using the latter identity and

Eq. (36), we get the system[
HFF B̂T

∗F
B̂∗F O

] [
xk
F
λ̂k

]
=

=

[
gk
F + bF −HFAxk

A
B̂∗Fxk

F

]
,

(43)

with a nonsingular matrix. The right-hand side of
Eq. (43) being bounded due to ‖B̂∗Fxk

F‖ = ‖B∗Fxk
F‖,

we conclude that the set {xk
F : F(xk) = F} is bounded.

See also [15] or [12]. �

Remark 1. Notice that the assumption on the bound-
ary of ΩS does not imply the compactness of ΩSE.

5. Convergence

Now we are ready to prove the main convergence re-
sults. To describe them, let F = F̃(x̂) denote the set
of the indices of variables that are involved in the free
constraints of the unique solution x̂ and recall that x̂
is a regular solution of Eq. (1) if B∗F is a full row rank
matrix (∗ denotes the full set of indices).
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Theorem 1. Let {xk} and {λk} be generated by Alg. 1
for the solution of Eq. (1) with η > 0, 0 < β < 1,
M0 > 0, % > 0, and λ0 ∈ Rm. Then the following
statements hold.
(i) {xk} converges to the solution x̂ of (Eq. (1).
(ii) If the solution x̂ of Eq. (1) is regular, then {λk}
converges to the uniquely determined vector λ̂ of La-
grange multipliers of Eq. (1).
(iii) Let us define for any d ∈ Rm

ΩE(d) = {x ∈ Rn : Bx = d}. (44)

If the feasible set ΩSE is empty and ηk → 0, then {xk}
converges to the solution x of the nearest feasible prob-
lem with shifted equality constraints,

ΩE = ΩE(d), (45)

where

d = arg min ‖d‖ s.t. ΩE(d) ∩ ΩS 6= ∅. (46)

Proof: (i) Since the iterates xk are bounded due to
Prop. 2, it follows that there is a cluster point x of
{xk} and there is K ⊆ N such that

lim
k→∞

{xk}k∈K = x. (47)

Moreover, since xk ∈ ΩS and by Eq. (31)

lim
k→∞

‖Bxk‖ = 0, (48)

it follows that Bx = o and x ∈ ΩSE .

To show that x solves Eq. (1), let d ∈ Rn satisfy
x+d ∈ ΩSE , so that Bd = o, and set dk = d+(x−xk),
so that xk +dk ∈ ΩSE . Thus we can use Lem. 1 to get
for each k ∈ K

f(xk + dk)− f(xk) =

= L(xk + dk, λk, %)− L(xk, λk, %) =

= gT (xk, λk, %)dk + %
2

(
dk
)T

Adk ≥

≥
(
dk
)T

gP (xk, λk, %) + %
2

(
dk
)T

Adk ≥

≥ −M0‖Bxk‖+
%λmin

2
‖dk‖2.

(49)

We used the relation gTdk ≥ (gP )Tdk (see Lem. 1 of
[12])

Taking the limits, we get

f(x + d)− f(x) ≥ %λmin

2
‖d‖2. (50)

Thus x solves Eq. (1). The solution x̂ of Eq. (1) being
unique, it follows that xk converges to x = x̂.

(ii) Let us recall that F = F̃(x̂) and denote
H = A + %BTB. Since we have just proved that {xk}

converges to x̂, there is k1 such that F ⊆ F{xk} for
k ≥ k1 and

gF (xk, λk, %) = HF∗x
k − bF + BT

∗Fλ
k, (51)

converges to zero. It follows that the sequence

BT
∗Fλ

k = bF −HF∗x
k + gF (xk, λk, %), (52)

is bounded. Moreover, if λ is any vector of Lagrange
multipliers, then

b = Hx̂ + BTλ, (53)

and

BT
∗F (λk − λ) = −HF∗(x

k − x̂) + gF (xk, λk, %), (54)

converges to zero.

If the solution x̂ of Eq. (1) is regular, then BT
∗F is

a full column rank matrix, i.e., Rm = ImB∗F , and
there is the unique Lagrange multiplier λ̂ for problem
Eq. (1). Moreover, since

λk − λ̂ ∈ ImB∗F , (55)

it follows that

‖BT
∗F (λk − λ̂)‖ ≥ σFmin‖λk − λ̂‖, (56)

where σFmin denotes the smallest nonzero singular value
of B∗F . The convergence of the right-hand side of
Eq. (56) to zero thus implies that λk converges to λ̂.

(iii) As in the proof of (i), there is a cluster point x of
xk. Using the other arguments of the proof of (i), we
get that x solves the problem to find min f(x) subject
to x ∈ ΩS and Bx = Bx. Moreover, if the feasible set
ΩSE is empty, then the multipliers λk are necessarily
unbounded. After some simple manipulations, we get
that the vector n with the nonzero components

nIi = ∇hi(xi), (57)

satisfies n ∈ ImBT . Due to the convexity, it follows
that x is the nearest point of ΩS to ΩE . �

6. Numerical Results

Now we are ready to show some numerical examples
which illustrate the preceding results. The feasible set
in the first example contains only one point and the
solution of the minimization problem in Exm. 1 is not
regular. The feasible set in Exm. 2 is empty and Alg. 1
converges to the closest point of the set ΩS to the set
ΩE (see Exm. 2 for formal definition). The sequence
of the Lagrange multipliers for the equality constraint
is unbounded in both cases.
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Example 1. In the first example the feasible set ΩSE

is restricted to the point. There is no point of the
feasible set which satisfies any constraint qualification
(Slater constraint qualification, regularity condition,
etc.). The optimization problem reads as follows:

min
x∈ΩSE

f(x), f(x) =
1

2
xTx− xT

[
1
1

]
, (58)

where

ΩE = {x ∈ R2 : x1 = 0},
ΩS = {x ∈ R2 : (x1 − 1)

2
+ x2

2 − 1 ≤ 0},
ΩSE = {x ∈ R2 : x ∈ ΩE and x ∈ ΩS}.

(59)

Fig. 1: Example 1, equality and inequality constraints.

0 1 2 3 4 5 6 7 8 9 10
x 10

5

0

50

100

150

λ

Number of iteration

Fig. 2: Example 1, values of the Lagrange multipliers during
the iteration process.

The solution of the problem is x̂ = (0, 0).

Figure 1 shows the geometric interpretation of the
equality and inequality constraints. The values of the

0 0.2 0.4

0

0.2

0.4

Fig. 3: Example 1, values of the vectors x during the iteration
process.

Lagrange multipliers for the equality constraint during
the iteration process of Alg. 1 are depicted in Fig. 2.
The values of the vectors x during the iteration pro-
cess of the same algorithm are depicted in Fig. 3. The
green circle marks the initial iteration and the red circle
indicates the last iteration.

Example 2. In the second example the feasible set
ΩSE is empty. There is no point of the feasible set
which satisfies any constraint qualification (Slater con-
straint qualification, regularity condition, etc.). The
optimization problem reads as follows:

min
x∈ΩSE

f(x), f(x) =
1

2
xTx− xT

[
1
1

]
, (60)

where

ΩE = {x ∈ R2 : x1 = 0},
ΩS = {x ∈ R2 : (x1 − 10)

2
+ x2

2 − 1 ≤ 0},
ΩSE = {x ∈ R2 : x ∈ ΩE and x ∈ ΩS}.

(61)

If ηk → 0, then Alg. 1 converges to the vector
x̂ = (9, 0) which is the closest point of ΩS to ΩE.

Figure 4 shows the geometric interpretation of the
equality and inequality constraints. The values of the
Lagrange multipliers for the equality constraint during
the iteration process of Alg. 1 are depicted in Fig. 5.
The values of the vectors xk during the iteration pro-
cess of the same algorithm are depicted in Fig. 6. The
green circle marks the initial iteration and the red circle
indicates the last iteration.
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Fig. 4: Example 2, equality and inequality constraints.
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Fig. 5: Example 2, values of the Lagrange multipliers during
the iteration process.
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Fig. 6: Example 2, values of the vectors x during the iteration
process.
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