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Abstract. In literature, it is well established that fea-
ture extraction and pattern classification algorithms
play essential roles in accurate estimation of the el-
bow joint angle. The problem with these algorithms,
however, is that they require a learning stage to recog-
nize the pattern as well as capture the variability as-
sociated with every subject when estimating the elbow
joint angle. As EMG signals can be used to represent
motion, we developed a non-pattern recognition method
to estimate the elbow joint angle based on twelve time-
domain features extracted from EMG signals recorded
from bicep muscles alone. The extracted features were
smoothed using a second order Butterworth low pass
filter to produce the estimation. The accuracy of the
estimated angles was evaluated by using the Pearson’s
Correlation Coefficient (PCC) and Root Mean Square
Error (RMSE).The regression parameters (Euclidean
distance, R2 and slope) were then calculated to observe
the effect of the features on elbow joint angle estima-
tion. In this investigation, we found that for a 10-
second long recording period, the MyoPulse Percentage
(MYOP) Rate produced the best accuracy: with PCC
of 0.97± 0.02 (Mean±SD) and RMSE of 11.37± 3.04◦

(Mean±SD), respectively. The MYOP feature also
showed the highest R2 and slope value of 0.986±0.0083
(Mean’s) and 0.746 ± 0.17 (Mean’s), respectively for
flexion and extension motions during all recorded peri-
ods.
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1. Introduction

Surface ElectroMyoGraphy (EMG) is often used to
control an assist device such as the upper and lower
limb exoskeletons with the function to support human
life [1]. It is obvious that the EMG signal can be related
to the human limb motion. Several efforts on EMG
signal detection have been made to investigate the re-
lationships between muscle groups and limb movement
[2] and [3]. In the EMG detection stage, Tang et al.
[4] collected EMG signal from four muscle groups lo-
cated at biceps brachii, brachioradialis, triceps, and
anconeus to estimate the elbow joint angle. Benitez
et al. [5] recorded the EMG signals from two mus-
cle groups located at biceps and triceps to develop an
orthotic system. The methods that utilize more mus-
cle groups in estimating the elbow joint angle, however,
would require more computational complexities in data
processing.

In order to get information related to elbow joint mo-
tion, the recorded EMG signal should be processed by
using time, frequency, or time-frequency domain meth-
ods to produce informative features. After the feature
extraction stage, the EMG features can represent use-
ful information related to the joint angle, force, and
torque. Choosing an appropriate feature is essential
because it determines the accuracy of the estimation.
Some previous studies have preferred to use time do-
main features over those extracted from frequency and
time-frequency domains to predict joint angle [6] and
[7] and torque [8]. This preference is due to reduced
complexity in data processing and the application of
a simple algorithm to be implemented in the real
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time control. Generally, after the feature extraction
process, the joint angle or torque is estimated using
a machine learning algorithm or a classifier to improve
the accuracy. The methods used in human-machine
interaction based on EMG control, are divided into
two categories: pattern recognition and non-pattern
recognition [1] methods. In the pattern recognition
methods, some previous studies used artificial neural
networks [4], fuzzy controllers [1], and support vector
machines [10] as their classifiers. The limitation in the
pattern recognition methods, however, is that the sys-
tem needs to be trained for each different subject due
to the variability in the EMG signal. Therefore, in
some cases, this method is not practically applicable.
In the non-pattern recognition methods, some previ-
ous studies used onset analysis, proportional control,
and threshold control [11] and [12]. These methods are
simple to be implemented but their accuracies tend to
be low. There is also limited literature on elbow-joint
angle estimation using non-pattern recognition meth-
ods.

Although some efforts have been dedicated to pat-
tern recognition and non-pattern recognition methods
for elbow-joint angle estimation, there are still some
limitations that should be addressed in furthering this
research. Therefore, the purpose of this study is to
develop a non-pattern recognition method for estimat-
ing the elbow joint angle using a single muscle group
(biceps). To implement the proposed method, twelve
time-domain features were investigated and a second-
order Butterworth low pass filter was applied to filter
the features. The specific objectives of the study are
to:

• evaluate the accuracy of EMG features in esti-
mating the elbow joint angle using the Pearson’s
Correlation Coefficient (PCC) and the Root Mean
Square Error (RMSE),

• evaluate the regression parameters (Euclidean dis-
tance, R-squared, and slope) that relate to the el-
bow joint angle.

2. Theoretical Background

2.1. Time Domain Features

The recorded EMG signal was extracted to get the
features that related to the human elbow-joint angle
during flexion and extension motions. In this study,
twelve Time-Domain (TD) features were extracted to
estimate the elbow joint angle. These features were
classified into three categories (based on energy, com-
plexities, and frequency information) [13]. The energy-
based features were as follows: the Root Mean Square

(RMS), Integrated EMG (IEMG), Variance (VAR),
and Mean Absolute Value (MAV). The complexity
of the EMG signal could be quantified by using the
Waveform Length (WL), Average Amplitude Change
(AAC), and Difference Absolute Standard Deviation
Value (DASDV) features. The calculated frequency-
based informative features were as follows: Zero Cross-
ing (ZC), Sign Slope Change (SSC), Wilson Amplitude
(WAMP), and MYOPulse Percentage (MYOP) Rate.

1) RMS

The Root Mean Square (RMS) value represents the
mean power of a signal over a window length of EMG
samples. The mathematical equation to describe this
feature is as follows [14]:

RMS =

√√√√ 1

N

N∑
i=1

x2
i , (1)

where xi indicates the ith EMG signal and N indicates
the length of the EMG signal.

2) IEMG

The Integrated EMG (IEMG) value is an absolute
summation of the EMG signal over a window length
of EMG samples. The mathematical equation is de-
scribed as follows [14]:

IEMG =

N∑
i=1

|xi| . (2)

3) VAR

The Variance of the EMG signal, EMG (VAR), is the
average value of the power of the EMG signal. VAR is
formulated as follows [14]:

VAR =
1

N − 1

N∑
i=1

∣∣x2
i

∣∣ . (3)

4) MAV

The Mean Absolute Value (MAV) is the average of
the absolute value of the EMG signal for a window
length N . The MAV is formulated as [14]:

MAV =
1

N

N∑
i=1

|xi| . (4)
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5) LOG

The Logarithm (LOG) parameter is a measure of the
non-linear characteristic of the EMG signal. The LOG
value is calculated based on the average of the loga-
rithm of the EMG signal. The LOG value is defined as
follows [14]:

LOG = exp

(
1

N

N∑
i=1

log(|xi|)

)
. (5)

6) WL

The Waveform Length (WL) is used to measure the
length of the signal between two consecutive samples
xi+1 and xi. WL is formulated as follows [14]:

WL =

N−1∑
i=1

|xi+1 − xi| . (6)

7) AAC

The Average Amplitude Change (AAC) is an the mean
value of the waveform length within a window of length
N . AAC is written as follows [14]:

ACC =
1

N

N−1∑
i=1

|xi+1 − xi| . (7)

8) DASDV

The Difference Absolute Standard Deviation Value
(DASDV) is calculated based on the standard devia-
tion between xi+1 and xi. DASDV is defined as follows
[14]:

DASDV =

√√√√ 1

N − 1

N−1∑
i=1

(xi+1 − xi)
2
. (8)

9) ZC

The Zero Crossing (ZC) value is the number of time
that the signal crosses a certain threshold value. ZC is
calculated as [14]:

ZC =

N−1∑
i=1

[f (xi · xi+1) ∩ |xi − xi+1|] ≥ threshold,

f(x) =

{
1, if → x ≥ threshold,
0, otherwise.

(9)

10) SSC

The Sign Slope Change (SSC) is the number of times
the slope of the signal changes its sign within a window
of length N . It is formulated as follows [14]:

SSC =

N−1∑
i=1

[f [(xi − xi+1) · (xi − xi+1)]] ,

f(x) =

{
1, if → x ≥ threshold,
0, otherwise.

(10)

11) WAMP

The Wilson Amplitude (WAMP) is the number of
times that the absolute value of the difference be-
tween two consecutive samples (xi+1 and xi) exceeds
a threshold value. It is defined as follows [14]:

WAMP =

N−1∑
i=1

[f (|xi − xi+1|)] ,

f(x) =

{
1, if → x ≥ threshold,
0, otherwise.

(11)

12) MYOP

The MyoPulse Percentage (MYOP) Rate is the average
of the number of times that the EMG signal exceeds
a predefined threshold. MYOP can be expressed as
[15]:

MYOP =
1

N

N∑
i=1

[f (xi)] ,

f(x) =

{
1, if → x ≥ threshold,
0, otherwise.

(12)

2.2. Infinite Impulse Response

It is obvious that the EMG signal has random and
stochastic characteristics in nature [16]. Therefore, in
order to smooth and reduce the noise contaminating
this signal, filtering is required. Commonly, the filter-
ing stage, as it has been performed in previous studies
[12] and [17], is conducted by applying a digital Low-
Pass Filtered (LPF) to process the EMG signal. In this
study, an Infinite Impulse Response (IIR) LPF was de-
signed and implemented. The LPF was constructed
using a 2nd order Butterworth filter with cutoff fre-
quencies set between 80 Hz and 100 Hz, respectively.
The IIR filter was implemented using a cascade bi quad
filter. This digital filter was then implemented by using
the following difference equation [18]:

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bPx[n− P ]−
+a1y[n− 1]− a2y[n− 2]− · · · − aQy[n−Q],

(13)
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where x[n] indicates the nth input sample, y[n] indi-
cates the nth output sample, b0, b1, bP , a1, a2, and aQ
are the filter coefficients, and P = Q is the filter order.

3. Materials and Method

3.1. Participants

To implement the proposed method, four healthy male
participants with no history of muscular disorder (age:
22.4± 3.2 years old, weight: 65.45± 5.67 kg) were re-
cruited for this study after giving informed consent.
Before the data collection process, the participants
were recommended not to do any hard work especially
anything that could potentially harm the elbow joint.
The participants were instructed on how to perform the
flexion and extension movements and were informed
about any potential risk that could be involved in car-
rying out these motions.
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11) WAMP 

The Wilson Amplitude (WAMP) is the number of times 

that the absolute value of the difference between two 
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It is defined as follows[14]: 
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Fig. 1: The Exoskeleton frame to synchronize the elbow-joint motion 

 

Fig. 1: The Exoskeleton frame to synchronize the elbow-joint
motion.

3.2. Equipment

A one-channel EMG system comprised of: a pre-
amplifier, a band pass filter (with cut-off frequencies
of 20 to 500 Hz, respectively), a summing amplifier,
and an adjustable gain amplifier, was built. EMG sig-
nals were collected using three disposable surface (pre-
gelled Ag/AgCl) bioelectrodes. Two bioelectrodes were
positioned on the biceps muscle with the third one
placed on the hand as a common ground electrode.
The participants held an exoskeleton frame which was
used to synchronize the elbow joint motion (see Fig. 1).
The elbow joint angle of the exoskeleton was collected
using a linear potentiometer which was located at the
joint between the arm and forearm of the exoskeleton.
A one kilogram (1 kg) load was placed on the forearm
of the exoskeleton.

3.3. Data Collection

Before the data collection process, the participants
were instructed to follow some specific steps. EMG
signals were recorded while the subject’s arm held the
exoskeleton and moved it in flexion and extension mo-
tions within the range of 0 to 140◦. As mentioned
above, the exoskeleton was loaded with a 1 kg load
(see Fig. 1). The motion periods were guided using
a metronome program so that the flexion and extension
movements could be regulated for 2 seconds, 4 seconds,
8 seconds and 10 seconds periods. EMG signals were
recorded using a sampling frequency of 1000 Hz. For
each period of motion, the participants performed flex-
ion and extension motions for eight cycles (designated
by C1, C2, C3, C4, C5, C6, C7, and C8) so that the to-
tal dataset comprised of 128 data points (4 participants
× 4 periods × 8 cycles).

3.4. Data Processing

Figure 2 shows the processing of EMG signals to es-
timate the elbow joint angle. The collected EMG
signals from biceps were processed to extract twelve
Time-Domain (TD) features with a length of window
of 200 milliseconds. The feature extraction process was
conducted for each cycle of motion with the total of
eight cycles. All of the extracted TD features such as:
EMGF (RMS, IEMG, VAR, MAV, LOG, WL, AAC,
DASDV, ZC, SSC, WAMP, and MYOP) were calcu-
lated for each cycle and motion period. In order to
obtain the estimated angle, the second order Butter-
worth low pass filter was then applied to smooth the
features. As mentioned before, this IIR low pass fil-
ter was designed using the cut-off frequencies specified
above to smooth out the EMG signals. The filtered fea-
ture Melbas then assumed as the estimated elbow joint
angle. To evaluate the performance of the proposed
method, the estimated elbow joint angle was analyzed
using the Pearson’s Correlation Coefficient (PCC) and
Root Mean Squared Error (RMSE). The PCC was used
to evaluate the relationship between the extracted TD
features and the elbow joint angle. The RMSE value
was used to evaluate the deviation between the esti-
mated angle and the measured angle. The linearity
of the estimated angle was also evaluated using linear
regression parameters namely R2, Slope and the Eu-
clidian Distance.

3.5. Statistical Analysis

The statistical Analysis of Variance (ANOVA) was per-
formed to observe if there was any statistical difference
in performance and the regression parameters between
the periods of motion (10 seconds, 8 seconds, 4 seconds,
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Time Domain Feature

RMS, IEMG, VAR, MAV, LOG, WL, 
AAC, DASDV, ZC, SSC, WAMP, MYOP

EMG

Digital Filtering

 2nd order Butterworth LPF

Evaluation

Pearson’s correlation coefficient, RMSE, 
R2, slope and Euclidean distance

EMGF

EMGL

Estimated angle

Measured angle

Fig. 2: The processing of EMG signas for flexion and extension movements to estimate the elbow joint angle. EMG signals were
collected from biceps; time domain features were extracted and smoothed using a second order Butterworth low pass filter.

and 2 seconds). The significance test was established
with confidence level of 95 % (alpha = 0.05).

4. Results and Discussion

The recorded EMG signals and the measured angles ac-
quired from four participants were processed offline for
feature extraction and evaluation. A predefined thresh-
old was required for ZC, SSC, WAMP, and MYOP fea-
tures. The cut-off frequency of the LPF was also essen-
tial which determined the smoothness of the estimated
angle. In this work, the threshold and cut-off frequen-
cies were chosen such that elbow joint angle estimation
could be made at the maximum performance. The de-
tailed results of this study are explained and discussed
in the following subsection.

4.1. Accuracy of the Elbow Joint
Angle Estimation

In this work, a relationship between the estimated an-
gle and the measured angle was indicated by the PCC.
A coefficient score approaching 1 indicates that there is
a strong relationship and a score approaching 0 shows
that there is a weak relationship. In the motion period
of 10 seconds Fig. 3(a) and Fig. 3(b), the results show
that the estimated angles based on the MYOP feature
have the highest correlation coefficient (0.97 ± 0.02)
(Mean±SD) and the lowest RMSE (11.37 ± 3.04◦)

(Mean±SD) value. In the motion period of 8 seconds,
as shown in Fig. 3(c) and Fig. 3(d), the estimated
angle based on the MYOP feature shows the high-
est correlation coefficient (0.97 ± 0.01) and the lowest
RMSE (11.25± 2.44◦) value. Figure 3(e) and Fig. 3(f)
show that the estimated angle from the MYOP fea-
ture has the highest accuracy (correlation coefficient
= 0.91±0.04 and RMSE = 17.58±3.08◦). The highest
accuracies of the estimated angle are also found from
the estimated angle based on the MYOP feature in the
motion period of 2 seconds (0.88±0.05 and 20.13±2.69◦
for correlation coefficient and RMSE, respectively).
Over all periods of motion, there is a minimum of
RMSE of 6.07◦ and a maximum correlation of 0.99 that
occurred in the 10 second period of motion. Among
the other features, the correlation coefficient of the es-
timated angle from Zero Crossing (ZC) feature showed
the widest variance (Fig. 3(a), Fig. 3(b), Fig. 3(c),
Fig. 3(d), Fig. 3(e) and Fig. 3(f)). The estimated an-
gle based on the VAR feature showed wider variance of
RMSE compared to the other features. The ANOVA
tests showed that there was a significant difference (p-
value < 0.05) in accuracy between groups of periods
(10 seconds, 8 seconds, 4 seconds and 2 seconds) for all
features except for the MYOP feature. In the period of
motion of 8 seconds and 10 seconds, the MYOP feature
showed that there was no significant difference in the
RMSE value (p-value > 0.05). This indicates that the
estimated angle using the MYOP feature is more con-
sistent and produces higher accuracy to estimate the
elbow joint angle for different motion periods compared
to the other features.
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Fig. 3: Effect of features EMG to the accuracy of the elbow-joint angle estimation. The boxplot of Pearson’s correlation coefficient for period of

motion (a) 10s, (c) 8s, (e) 4s and (g) 2s. The boxplot of RMSE for period of motion (b) 10s, (d) 8s, (f) 4s and (h) 2s.
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Fig. 3: Effect of features EMG to the accuracy of the elbow-joint angle estimation. The boxplot of Pearson’s correlation coefficient for period of

motion (a) 10s, (c) 8s, (e) 4s and (g) 2s. The boxplot of RMSE for period of motion (b) 10s, (d) 8s, (f) 4s and (h) 2s.
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Fig. 3: Effect of features EMG to the accuracy of the elbow-joint angle estimation. The boxplot of Pearson’s correlation coefficient for period of
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0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
R

M
S

IE
M

G

V
A

R

M
A

V

L
O

G

W
L

A
A

C

D
A

S
D

V

Z
C

S
S

C

W
A

M
P

M
Y

O
P

C
o

r
r
e
la

ti
o
n

(a)

0

5

10

15

20

25

30

35

40

R
M

S

IE
M

G

V
A

R

M
A

V

L
O

G

W
L

A
A

C

D
A

S
D

V

Z
C

S
S

C

W
A

M
P

M
Y

O
P

R
M

S
E

(d
e
g

r
e
e
s)

(b)

0

5

10

15

20

25

30

35

40

R
M

S

IE
M

G

V
A

R

M
A

V

L
O

G

W
L

A
A

C

D
A

S
D

V

Z
C

S
S

C

W
A

M
P

M
Y

O
P

R
M

S
E

 (
d

e
g

r
e
e
s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
M

S

IE
M

G

V
A

R

M
A

V

L
O

G

W
L

A
A

C

D
A

S
D

V

Z
C

S
S

C

W
A

M
P

M
Y

O
P

C
o

r
r
e
a

la
ti

o
n

(e)

0

5

10

15

20

25

30

35

40

IE
M

G

V
A

R

M
A

V

L
O

G

W
L

A
A

C

D
A

S
D

V

Z
C

S
S

C

W
A

M
P

M
Y

O
P

R
M

S
E

(d
e
g

r
e
e
s)

(f)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
M

S

IE
M

G

V
A

R

M
A

V

L
O

G

W
L

A
A

C

D
A

S
D

V

Z
C

S
S

C

W
A

M
P

M
Y

O
P

C
o

r
e
la

ti
o

n

(g)

0

5

10

15

20

25

30

35

40

R
M

S

IE
M

G

V
A

R

M
A

V

L
O

G

W
L

A
A

C

D
A

S
D

V

Z
C

S
S

C

W
A

M
P

M
Y

O
P

R
M

S
E

(d
e
g

r
e
e
s)

(h)

(d) 8 s.

SECTION POLICIES VOLUME: XX | NUMBER: X | 2015 | MONTH 

© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 1 

Fig. 3: Effect of features EMG to the accuracy of the elbow-joint angle estimation. The boxplot of Pearson’s correlation coefficient for period of
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Fig. 3: Effect of features EMG to the accuracy of the elbow-joint angle estimation. The boxplot of Pearson’s correlation coefficient for period of

motion (a) 10s, (c) 8s, (e) 4s and (g) 2s. The boxplot of RMSE for period of motion (b) 10s, (d) 8s, (f) 4s and (h) 2s.
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Fig. 3: Effect of features EMG to the accuracy of the elbow-joint angle estimation. The boxplot of Pearson’s correlation coefficient for period of

motion (a) 10s, (c) 8s, (e) 4s and (g) 2s. The boxplot of RMSE for period of motion (b) 10s, (d) 8s, (f) 4s and (h) 2s.
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Fig. 3: Effect of features EMG to the accuracy of the elbow-joint angle estimation. The boxplot of Pearson’s correlation coefficient for period of

motion (a) 10s, (c) 8s, (e) 4s and (g) 2s. The boxplot of RMSE for period of motion (b) 10s, (d) 8s, (f) 4s and (h) 2s.
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Fig. 3: The effect of TD features on the accuracy of the elbow joint angle estimation. The box plot of Pearson’s Correlation
Coefficient were calculated for the following periods of motion: (a) 10 s, (c) 8 s, (e) 4 s and (g) 2 s. The box plot of the
RMSE value for periods of motion: ( b) 10 s, (d) 8 s, (f) 4 s and (h) 2 s.
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Fig. 4: Sample of time respons of the normalized EMG features for period of motion of 10 seconds. EMG features of RMS, IEMG, VAR, MAV, 

and LOG for (a) flexion and (b) extension motion. EMG features of WL, AAC, and DASDV for (c) flexion and (d) extension motion. EMG features 
of ZC, SSC, WAMP and MYOP for (e) flexion and (f) extension motion. 
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Fig. 4: Typical time response for the normalized estimated angle for a motion period of 10 seconds. The estimated angle based
on RMS, IEMG, VAR, MAV, and LOG features for (a) flexion and (d) extension motions. The estimated angle from WL,
AAC, and DASDV features for (b) flexion and (e) extension motions. The estimated angle from ZC, SSC, WAMP and
MYOP features for (c) flexion and (f) extension motions.

The results of our proposed method are compara-
ble with those presented in several previous studies [3]
and [19]. Pau et al. developed a model to estimate
the elbow joint angle using the Hill-based method and
a genetic algorithm in two muscle groups (biceps and
triceps) [3]. In their study, they achieved an RMSE
value of 18.6± 6.5◦ for five continuous cycles.

Tang et al. studied the elbow joint angle estimation
problem using artificial neural networks as a classifier.
In their research, they utilized four muscle groups (bi-
ceps brachii, brachioradialis, triceps brachii and an-
coneus). The RMSE values of their model were 10.7◦,
9.67◦, 12.42◦ for motion period of 2 seconds, 4 seconds,
and 8 seconds, respectively [19].

4.2. Response of Estimated Angle to
Time

Figure 4(a), Fig. 4(b), Fig. 4(c), Fig. 4(d), Fig. 4(e) and
Fig. 4(f) show a typical response of the estimated angle
to time for a motion period of 10 seconds (red line indi-
cate the measured angle). Ideally, the estimated angle
should be comparable to the measured angle. To test
this proximity, the Euclidean Distance (ED) was cal-
culated to present the closeness between the pattern of
the estimated angle and the measured angle as shown
in Eq. (14):

ED =

√√√√ N∑
i=1

(EMGL −Anglei)
2
, (14)
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Tab. 1: The Euclidean Distance between elbow joint angle and features for flexion and extension motions (period of motion:
10 seconds, 8 seconds, 4 seconds, and 2 seconds). The bold text indicates the lowest value of the Euclidean Distance.

Features Flexion motion (NORM) Extension motion (NORM)
T = 10∼s T = 8∼s T = 4∼s T = 2∼s T = 10∼s T = 8∼s T = 6∼s T = 2∼s

RMS 0.671 0.921 0.615 0.729 0.741 0.606 0.52 0.547
IEMG 0.625 0.898 0.61 0.761 0.682 0.597 0.519 0.563
VAR 1.34 1.598 1.023 1.088 1.493 1.202 0.686 0.742
MAV 0.625 0.898 0.61 0.761 0.682 0.597 0.519 0.563
LOG 0.654 0.884 0.622 0.786 0.66 0.602 0.545 0.587
WL 0.76 1.091 0.645 0.715 0.952 0.699 0.548 0.595
AAC 0.76 1.091 0.645 0.715 0.952 0.699 0.548 0.595

DASDV 0.696 1.039 0.661 0.718 0.827 0.632 0.551 0.575
ZC 0.445 0.313 0.289 0.244 0.805 0.766 0.602 0.642
SSC 1.449 1.547 1.08 0.974 1.709 1.003 0.763 0.618

WAMP 0.312 0.325 0.242 0.341 0.452 0.445 0.549 0.565
MYOP 0.581 0.624 0.532 0.678 0.329 0.191 0.43 0.496

Tab. 2: The Linear Regression R2 values between the estimated and measured angles. The R2 values were calculated for all
periods of motion (10 second, 8 seconds, 4 seconds, and 2 seconds) for the flexion and extension movements.

Features Flexion Extension
T = 10∼s T = 8∼s T = 4∼s T = 2∼s T = 10∼s T = 8∼s T = 6∼s T = 2∼s

RMS 0.952 0.949 0.965 0.969 0.974 0.995 0.993 0.981
IEMG 0.956 0.947 0.967 0.968 0.981 0.993 0.995 0.985
VAR 0.824 0.812 0.86 0.813 0.916 0.949 0.993 0.997
MAV 0.956 0.947 0.967 0.968 0.981 0.993 0.995 0.985
LOG 0.957 0.942 0.973 0.967 0.988 0.99 0.994 0.988
WL 0.962 0.939 0.971 0.978 0.977 0.993 0.995 0.988
AAC 0.962 0.939 0.971 0.978 0.977 0.993 0.995 0.988

DASDV 0.955 0.943 0.966 0.974 0.974 0.996 0.993 0.986
ZC 0.946 0.99 0.977 0.964 0.856 0.889 0.914 0.91
SSC 0.852 0.831 0.847 0.863 0.968 0.964 0.987 0.993

WAMP 0.995 0.998 0.995 0.993 0.976 0.996 0.942 0.93
8 MYOP 0.979 0.987 0.997 0.993 0.989 0.991 0.983 0.971

Tab. 3: The Linear Regression Slope values between the estimated and the measured angle. The slopes were calculated for all
periods of motion (10 seconds, 8 seconds, 4 seconds, and 2 seconds) for the flexion and extension movements.

Features Flexion Extension
T = 10∼s T = 8∼s T = 4∼s T = 2∼s T = 10∼s T = 8∼s T = 6∼s T = 2∼s

RMS 0.752 0.693 0.608 0.466 −0.735 −0.619 −0.535 −0.434
IEMG 0.761 0.703 0.609 0.446 −0.752 −0.622 −0.534 −0.418
VAR 0.68 0.569 0.499 0.299 −0.806 −0.51 −0.533 −0.394
MAV 0.761 0.703 0.609 0.446 −0.752 −0.622 −0.534 −0.418
LOG 0.733 0.712 0.597 0.432 −0.757 −0.616 −0.507 −0.399
WL 0.707 0.639 0.593 0.484 −0.652 −0.585 −0.505 −0.394
AAC 0.707 0.639 0.593 0.484 −0.652 −0.585 −0.505 −0.394

DASDV 0.743 0.656 0.583 0.483 −0.701 −0.613 −0.502 −0.406
ZC 0.766 0.852 0.804 0.825 −0.454 −0.811 −0.548 −0.452
SSC 0.637 0.624 0.488 0.426 −0.726 −0.627 −0.514 −0.47

WAMP 0.822 0.889 0.831 0.726 −0.702 −0.88 −0.666 −0.511
MYOP 0.892 0.851 0.727 0.554 −0.917 −0.909 −0.621 −0.497

where N indicates the number of samples, Anglei
stands for the-ithmeasured angle and the EMGL shows
the filtered features (estimated angle). In general,
a small value of ED indicates a close relationship be-
tween the estimated angle and the measured angle. ED
was measured for all periods of motion (10 seconds,
8 seconds, 4 seconds and 2 seconds) and for all of the
TD features.

Table 1 shows the summary of the ED values for
all motion periods and features. The estimated angle

based on the WAMP feature tended to show smaller
ED values in the elbow flexion trajectory (for all peri-
ods of motion) compared to those based on the other
features. For the elbow extension trajectory, the esti-
mated angles based on the MYOP feature showed the
lowest value (0.329, 0.191, 0.430, and 0.496 for motion
period of 10 seconds, 8 seconds, 4 seconds and 2 sec-
onds, respectively). The estimated angle based on the
VAR feature tended to have higher Euclidean Distance
values compared to other features for all periods of mo-
tion.
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Fig. 5: The relationship between the normalized elbow-joint angle to the normalized EMG features during flexion (a-c) and extension (d-f) motion 
for period of motion 10s. 
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Fig. 5: The relationship between the normalized elbow-joint angle to the normalized EMG features during flexion (a-c) and extension (d-f) motion 
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Fig. 5: The relationship between the normalized elbow-joint angle to the normalized EMG features during flexion (a-c) and extension (d-f) motion 
for period of motion 10s. 
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Fig. 5: The relationship between the normalized measured angle to the normalized EMG features during flexion (a), (b), and (c),
and extension (d), (e), and (f) for period of motion = 10 seconds.

4.3. The Effects of the Elbow Joint
Angle on EMG Signal Features

Figure 5 shows a typical relationship between the esti-
mated and measured angles for both flexion and exten-
sion movements (period of motion = 10 seconds). The
R2 and Slope values were calculated to evaluate the
linear regression between the estimated and measured
angle as shown in Tab. 2 and Tab. 3. Table 2 shows
that the R2 of the estimated angle from the MYOP
and WAMP features are higher and more consistent for
all periods of motion (ranged between 0.938 and 0.998)
compared to those calculated from other features. This
means that the estimated angles were fitted closely to
the measured angles.

The R2 values of the model developed by Tang et
al. were 0.83, 0.87 and 0.79 for the periods of mo-
tion 2 seconds, 4 seconds and 8 seconds, respectively
[19]. Table 3 shows several of the Slope values for
various EMG features. In the flexion trajectory, the
estimated angle based on the WAMP and MYOP fea-
tures showed the best Slope value (ranged from 0.727 to

0.889). In the extension trajectory, the estimated angle
based on the MYOP feature had the best Slope value
(ranged from −0.917 to −0.909 for periods of motion
10 seconds and 8 seconds, respectively).These values
indicated that the estimated angle was almost linearly
related to the measured angle. The negative value in-
dicated a negative response between the measured an-
gle and the estimated angle. From the ANOVA test,
unfortunately, we found that there was a significant
difference (p-value < 0.05) between the Slopes during
extension and flexion movements. The Slope values
decreased for the periods of motions from 10 seconds,
8 seconds, 4 seconds and 2 seconds, respectively. Ide-
ally, the slope of the features should be constant so that
the model can be used for any periods of motion. In
the future, a model that can compensate the decrement
of the slope is needed.

5. Conclusion

This study presents an investigation of TD features
to estimate the elbow joint angle using EMG features
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based on a non-pattern recognition method. Some
parameters such as the: Pearson’s Correlation Coef-
ficient, Root Mean Squared Error, Euclidean Distance,
R2, Linear Regression Slope were evaluated to obtain
the best EMG features in estimating the elbow joint
angle. The EMG signals for this study were collected
from biceps alone enabled us to estimate the elbow
joint angle. Our findings show that for a 10 sec-
ond long recording period, the MyoPulse Percentage
(MYOP) Rate produced the best accuracy: with PCC
of 0.97± 0.02 (Mean±SD) and RMSE of 11.37± 3.04◦

(Mean±SD), respectively. The MYOP feature also
showed the highest R2 and Slope value 0.986± 0.0083
(Mean±SD) and 0.746±0.17 (Mean±SD), respectively
for flexion and extension motions during all recorded
periods.
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