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Abstract. In this paper, the influence of scattering en-
hancement particles CaCO3, CaF2, SiO2 and TiO2,
adding to YAG:Ce phosphor compounding, on color
uniformity of white LEDs (W-LEDs) was presented.
Firstly, the physical model of multi-chip W-LEDs is
simulated and demonstrated by using commercial Light-
Tools 8.1.0 program. After that, the influence of scat-
tering enhancement particles on color uniformity is cal-
culated and analyzed. With using the Monte Carlo
simulation and the Mie-scattering theory, the color
uniformity improvement of an 8500 K W-LEDs is
demonstrated convincingly. From the researched re-
sults, the best color uniformity can be accomplished with
TiO2 particles. The results and discussions provided
a practical approach for higher-quality manufacturing
W-LEDs.
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1. Introduction

Nowadays, W-LEDs are becoming increasingly im-
portant light sources for illumination applications,
because they are long-life, compact, mercury-free and
energy-efficient. Color uniformity is the main optical
properties of W-LEDs and it could be improved
in many previous papers [1], [2] and [3]. All these
studies started from the scattering enhancement
in phosphor-converted white-LEDs (PC-LEDs). In
fact, the structure of PC-LEDs is the combination

of YAG:Ce phosphor and silicone glue. The YAG:Ce
phosphor absorbs the exciting blue light from the chips
to stimulate the yellow light and thus result in white
light with the desired color temperature [4]. In other
words, in these studies, the color uniformity of LEDs
was improved by optimizing the state of the phosphor
or the optical structure of PC-LEDs. In conclusions,
the spatial color uniformity of PC-LEDs can be con-
trolled by the thickness and the concentration of the
phosphor [9]. Moreover, the location of phosphor ma-
terial in the silicone layer significantly effects on the
color performance. The color temperature of PC-LEDs
has demonstrated the strong influence of the refractive
indexes of the silicone matrix and the phosphor mate-
rials and the size of phosphor particles [10].

In this study, we concentrated on finding one particle
from scattering enhancement particles CaCO3, CaF2,
SiO2 and TiO2, which is employed for manufacturing
higher-quality W-LEDs. The target of study is an im-
provement the color uniformity of W-LEDs. This re-
search paper can be divided into three main sections:
In Section 2. , the physical model of 8500 K W-LEDs
is simulated and demonstrated by using commercial
LightTools 8.1.0 program. In Section 3. , by adding
one of scattering enhancement particles CaCO3, CaF2,
SiO2 and TiO2 to YAG:Ce phosphor compounding, the
color uniformity is simulated, calculated and analyzed:
In Section 4. , the simulation can be convinced by us-
ing the Monte Carlo simulation and the Mie-scattering
theory. In this study, the results demonstrated that the
best color uniformity of 8500 K W-LEDs could be ac-
complished with TiO2 particles. This results can con-
sider the prospective solution for higher-quality manu-
facturing W-LEDs in the near future.
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2. Physical Model

In this work, an 8500 K W-LEDs with the conformal
phosphor structure is simulated by using the commer-
cial LightTools software based on the Monte Carlo ray-
tracing method. To perform optical simulations, we
built 3-D models (Fig. 1). In this research, W-LEDs
has commonly configured:

• The reflector has a bottom length
of 8 mm, a height of 2.07 mm and
a length of 9.85 mm at its top surface.

• The conformal phosphor layer with a fixed thick-
ness of 0.08 mm covers the 9 LED chips.

• Each LED chip with a square base of 1.14 mm and
a height of 0.15 mm is bound in the cavity of the
reflector (Fig. 1(b)).The radiant flux of each blue
chip is 1.16 W at wavelength 455 nm.
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Silicone substrate LED chip

(a) The conformal phosphor structure.

(b) The original lamps and physical model.

Fig. 1: W-LEDs structure.

To maintain the average Correlated Color Temper-
ature (CCT) of 8500 K, the YAG:Ce concentration
changes to the concentration of CaCO3, CaF2, SiO2

and TiO2.The refractive index of the diffusors such as
CaCO3, CaF2, SiO2 and TiO2 are chosen as 1.66, 1.44,
1.47 and 2.87, respectively. The diffusers are assumed

to be spherical and have radius 0.5 µm. The average
radius of the phosphor particles are 7.25 µm and have
a refractive index of 1.83 at all wavelengths of light.
The refractive index of the silicone glue is 1.5. The
diffusional particle density is varied for optimizing illu-
mination CCT uniformity and output efficiency by the
expression:

Wphosphor +Wsilicone +Wdiffusor = 100 %, (1)

where Wsilicone, Wphosphor and Wdiffusor are the
weight percentages of the silicone, phosphor and dif-
fuser of the W-LEDs, respectively. To maintain the
mean CCT value of 8500 K, the weight of YAG:Ce
phosphor should be decreased when the weight per-
centage of the diffuser is increased.

3. Results and Discussion

For improving the light quality of the W-LEDs, the
difference of angular CCT Deviation (D-CCT) between
the normal and large angle is an important standard to
evaluate in the solid-state lighting application [9]. The
larger D-CCT can cause the yellow ring phenomenon
and generate the non-uniform white color at the differ-
ent angle [14]. In this study, the D-CCT is expressed
as D-CCT = CCT (Max) – CCT (Min). Here CCT
(Max) and CCT (Min) are the maximal CCT at the
zero degree of viewing angle and minimal CCT at the
70 degree of viewing angle, respectively. The scattered
light of each particle in PC-LEDs is different, resulting
in varying the optical properties of W-LEDs. If the
scattered blue light is enhanced enough, the D-CCT
can be reduced significantly. Conversely, the D-CCT
should be increased with lack or redundancy of the
scattered blue light in W-LEDs. The scattered blue
light not only combines with the converted yellow but
also combine the yellow ring for emitting white light,
resulting in a reduction of yellow ring phenomenon of
W-LEDs. It can be seen in Fig. 2, where the D-CCT of
CaCO3 and TiO2 cases have a downward trend. Mean-
while, the D-CCT of CaF2 and SiO2 cases grow with
their concentration.
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Fig. 2: The impact of the diffusive particles concentration on
CCT deviations.
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4. Scattering Description

Simulation results can be investigated and demon-
strated by Matlab software using Mie-scattering theory
[11]. The scattering coefficient µsca(λ), anisotropy fac-
tor g(λ) and reduced scattering coefficient δsca(λ) are
calculated by expression Eq. (2), Eq. (3) and Eq. (4):

µsca (λ) =

∫
N(r)Csca(λ, r)dr, (2)

g(λ) =

∫ ∫ 1

−1
p(θ, λ, r)f(r) cos θd cos θdr, (3)

δsca = µsca(1− g), (4)

where N(r) is the number density distribution of diffu-
sional particles (per cubic millimeter), Csca is the scat-
tering cross sections (per square millimeter), p(θ, λ, r)
is the phase function, λ is the wavelength of the in-
cident light (nanometers), r is the radius of particles
(micrometers), θ is the scattering angle (degree) and
f(r) is the size distribution function of the diffusers in
the phosphor layer.

f(r) = fdif (r) + fphos(r), (5)

N(r) = Ndif (r) +Nphos(r) =

= KN · [fdif (r) + fphos(r)],
(6)

where N(r) is composed of the diffusive particle num-
ber density Ndif (r) and the phosphor particle number
density Nphos(r). fdif (r) and fphos(r) are the size dis-
tribution function data of the diffusor and phosphor
particle. If the phosphor concentration c (milligrams
per cubic millimeter) of the mixture is known, KN de-
notes the number of the unit diffusor for one diffuser
concentration and KN can be obtained by:

c = KN

∫
M(r)dr. (7)

To obtain KN , we should first know the mass distri-
bution M(r) (milligrams) of the unit diffusor. Below
equation can calculate M(r):

M(r) =
4

3
πr3 [ρdiffdif (r) + ρphosfphos(r)] , (8)

where ρdif and ρphos are the density of diffusor and
phosphor crystal.

In Mie theory, Csca is normally presented:

Csca =
2π

k2

∞∑
0

(2n− 1)(|an|2 + |bn|2), (9)

where k is the wavenumber (2π/λ) and an and bn are
the expansion coefficients with even symmetry and odd
symmetry, respectively. These coefficients can be cal-
culated by equations below:

an(x,m) =
Ψ′n(mx)Ψn(x)−mΨn(mx)Ψ′n(x)

Ψ′n(mx)ξn(x)−mΨn(mx)ξ′n(x)
, (10)

an(x,m) =
mΨ′n(mx)Ψn(x)−Ψn(mx)Ψ′n(x)

mΨ′n(mx)ξn(x)−Ψn(mx)ξ′n(x)
, (11)

where x is the size parameter (= k · r), m is the refrac-
tive index of the scattering diffusive particles. Ψn(x)
and ξn(x) are the Riccati - Bessel function.

According to Eq. (3), the theoretical results of
g(λ) are calculated and shown in Fig. 3, Fig. 4 and
Fig. 3. Results show that the variation of the diffuser
concentration has a slight impact on the anisotropy
factor g(λ) and the increase of g(λ) by the diffu-
sional particle density is so small that the increase can
be neglected. The anisotropy factor of particles for
a long wavelength should be larger than that of a short
wavelength. It means that the particles should present
stronger a scattering effect for a short wavelength. This
theoretical result can be modified in the following an-
gular scattering amplitudes simulation shown in Fig. 3,
Fig. 4 and Fig. 5.

Fig. 3: The angular scattering amplitudes of the various diffu-
sional particles with sphere diameter = 1 µm for blue
light = 455 nm.

Fig. 4: The angular scattering amplitudes of the various diffu-
sional particles with sphere diameter = 1 µm for yellow
light = 595 nm.
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Fig. 5: The angular scattering amplitudes of the various diffu-
sional particles with sphere diameter = 1 µm for red
light = 680 nm.

In the mixture of phosphor, diffusor and silicone, the
refractive index of embedded silicone (nsil) is 1.53 and
the refractive index of diffusor (ndif ) are 1.66, 1.44,
1.47 and 2.87 respectively. Silicone and diffusors are
considered to be transparent for the blue light and
the yellow light. The refractive index of the phosphor
particle (nphos) has a complex form. Therefore, the
relative refractive indices of diffusor (mdif ) and phos-
phor (mphos) in the silicone are mdif = ndif · n−1sil and
mphos = nphos · n−1sil . For small spheres, the phase
function p(θ, λ, r) can be calculated according to the
following equation [12] and [13]:

p(θ, λ, r) =
4πβ(θ, λ, r)

k2Csca(λ, r)
, (12)

where β(θ, λ, r) is the dimensionless scattering func-
tion, which is obtained by the scattering amplitude
functions S1(θ) and S2(θ):

β(θ, λ, r) =
1

2

[
|S1(θ)|2 + |S2(θ)|2

]
. (13)

S1 =

∞∑
n=1

2n+ 1

n(n+ 1)

[
an(x,m)πn(cos θ)
+bn(x,m)τn(cos θ)

]
. (14)

S2 =

∞∑
n=1

2n+ 1

n(n+ 1)

[
an(x,m)τn(cos θ)

+bn(x,m)πn(cos θ)

]
. (15)

In equations Eq. (14) and Eq. (15), the angular de-
pendent functions and are expressed in the angular
scattering patterns of the spherical harmonics.

5. Conclusion

In this research, the influence of CaCO3, CaF2, SiO2

and TiO2 on color uniformity of 8500 K MCW-LEDs
was presented, calculated, analyzed and demonstrated.
From the researched results, some conclusions are pro-
posed:

• The CCT deviation has a decreasing tendency
when the concentration of CaCO3 and TiO2 in-
creases.

• Meanwhile the CCT deviation of CaF2 and SiO2

cases grow with their concentration.

• The best color uniformity of W-LEDs can be ob-
tained in TiO2 case. In summary, TiO2 parti-
cles should be chosen for improving the color uni-
formity of W-LEDs. This research provided an
important technical implication for the selection
of phosphors in WLED manufacturing and de-
velopment of phosphor materials for WLED ap-
plications. In further research, color rending in-
dex and luminous efficiency of MCW-LEDs by
adding CaCO3, CaF2, SiO2 and TiO2 particle into
the phosphor compounding is necessary to analyze
and demonstrate.
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