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Abstract. Distributed optical fiber sensors allow mon-
itoring physical effects across the whole cable. The pa-
per presents results obtained from the performed tests
and shows that single mode fibers can provide analyses
of the deformation changes, when distributed optical
systems BOTDR used. We used standard optical fiber
G.652.D with primary and secondary protected layers
and specialized cable SMC-V/ designed for this pur-
pose. The aim was to compare the deformation sen-
sitivity and determine which fiber types are the best
to use. We deformed the fiber in the longitudinal and
transverse directions and mechanically stressed in or-
thogonal directions to find how to localize optical fibers.
They could be deployed in real use. For achieving op-
timal results of mechanical changes and acting forces,
sensor fibers have to be located carefully.
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1. Introduction

Distributed fiber optic sensors is a group of fiber-optic
sensors. Distributed sensors enable the measurement
of quantity along the entire length of optical fiber. The
general principle of these systems is the phenomenon
called light scattering. Based on the light scattering
analysis, we distinguish several types of such systems.
Rayleigh scattering is used for the measurement of
attenuation profile of the optical fiber [I]. Raman scat-
tering is possible to use for monitoring the temperature
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along the optical fiber [2] and Brillouin scattering can
be used for measuring the temperature and deforma-
tion [3] and [4]. This article is focused on the mea-
surement of deformation utilizing Brillouin Time Do-
main Reflectometry (BOTDR). The principle is based
on the measurement of the stimulated Brillouin scatter-
ing. The frequency shift of Brillouin scattering is lin-
early dependent on the temperature and deformation.
Distributed sensors are used in many areas of measure-
ment, for example, for monitoring of the condition of
building structures, the temperature distribution along
the electrical cables, etc. Special optical cable SMC-
V4 is designed for measurement of deformation with
BOTDR system. However, this cable is more expen-
sive, and implementation of the cable is considerably
expensive for the measurement of long distance. The
alternative possibility is the use of standard telecom-
munications optical fiber, which is not recommended
for these purposes. The disadvantage of standard op-
tical fiber is a non-tight bond between the optical fiber
itself and the secondary protection in the case of mea-
surement of the deformation. For this reason, it is con-
sidered that the applied deformation is weakly trans-
mitted to the optical fiber itself. Standard telecom-
munications optical fibers G.652.D can be used for the
measurement of deformation, where there is not a big
emphasis on accuracy of measurement, for example,
in security systems. This combination offers less ac-
curacy, but the main requirement is knowledge about
a disruption of perimeter system. This solution repre-
sents a possible low-cost alternative solution of perime-
ter systems using BOTDR systems. The aim of this
article is the comparison of sensitivity to deformation
of these types of optical fiber and determining the suit-
ability of these standard optical fibers for the measure-
ment of deformation with distributed systems.
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2. Distributed System

BOTDR

In practical applications, optical fiber is sticked on the
surface of an analyzed structure. The optical fiber is
mounted directly inside of the building structure for
the analysis of construction. In this paper, we use of a
special cable SMC-V4, because the emphasis is placed
on the accuracy of measurement. Special cables, with
higher tensile strength and better protection, are also
more suitable for measurement of the terrain and soil
layers [5]. The authors [6] and [7] show that it is possi-
ble to use different types of cables for measurement of
deformation.

BOTDR (Brillouin Optical Time Domain Reflectom-
etry) operates on the principle of measurement of stim-
ulated Brillouin scattering. Brillouin scattering arises
due to the interaction of acoustic waves and pump of
the light beam, under the condition of supercritical
power of light passing through the optical fiber. The
transmitted light is diffused according to the changes
in the refractive index. The scattered light is shifted
due to Doppler effect on frequency by an amount vg.
This value is given by:

2nV,
UB = AO ’

(1)

where \g is the wavelength of transmitted light, n rep-
resents the refractive index of the core of the optical
fiber and V, denotes the propagation velocity of acous-
tic waves within the optical fiber. The resultant value
is given by:

Va = K?

. 2)
where o is the density of the material and K express
module of volume compressibility. The value o is de-
termined by the magnitude of deformation and tem-

perature on the optical fiber itself.

The strain response is defined as follows:

UB(a, n) =C.1e+ Cy,

3)

where coefficient C.; is 0.5 GHz/% and coefficient Cgg
is 10.87 GHz [§] for standard ITU-G.652 optical fiber
at wavelength 1550 nm.

Figure [I] shows a Brillouin frequency shift, which
is linearly dependent on the applied deformation and
temperature. The value of the magnitude of applied
deformation and temperature is obtained by scan Bril-
louin frequency shift using the probing of light. The
light is directed into the optical fiber from the oppo-
site end.

Experimental measurements were performed using a
distributed system for the measurement of deforma-
tion and temperature DITEST STA-R from Omnisens,
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Fig. 1: Rayleigh and Brillouin scattering.

which exploits the sensitivity of the Brillouin frequency
shift for sensing of temperature and strain. This tech-
nique uses standard low-loss single mode optical fiber.
The optical fiber offers the longest distance range with
unrivaled performances and a compatibility with stan-
dard telecommunication components. The functional-
ity principle consists of the frequency measurement of
the Brillouin scattered light. The spatial resolution
of 1 m is a distance of 20 km in the optical fiber, res-
olution 2 m is a distance 30 km, and value of resolu-
tion 3 m is a maximum length of optical fiber 50 km.
The system contains two independent channels with a
reach of 50 km. A step of measurement of 10 cm can
be set for short segments of optical fibers in hundreds
of meters. A maximum of measuring steps is limited
to a value of 100 000 measurement points across the
length of optical fiber.

In Fig.[2] we can see how to measure the Brillouin fre-
quency shift with a BOTDR. Pulsed light is introduced
into the optical fiber (from one end of the optical fiber),
and the power of spontaneous Brillouin backscattered
light is then measured in the time domain using het-
erodyne detection. The frequency of the incident light
slightly changes. Therefore, the same measurements

N
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Distance [m]

Fig. 2: Principle of BOTDR strain measurement.
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are carried out to obtain the Brillouin spectrum re-
peatedly at many frequencies. The specific frequency,
which indicates the peak power, is calculated by fitting
the spectrum to a Lorentzian curve. It must be cal-
culated at each point of the optical fiber. The strain
is obtained from this frequency. The distance D de-
fines a place, where the pulsed light is released into the
position, where the scattered light is generated.

cT
D=— 4
2n’ “)
where n is the refractive index, c is the light velocity in
a vacuum and T is the time interval between receiving
the scattered light and launching the pulsed light.

3. Experimental Setup

The constructed preparation was used to deform of the
optical fiber for experimental measurement (Fig. |3).
The preparation consists of galvanized sheet with di-
mensions 100 x 100 cm. Sheet with glued optical fiber is
affixed to the wooden frame. Subsequently, this sheet
is bending from the unloaded state ’0’ (0°) to the max-
imum bend ’10” (180°).

Fig. 3: Equipment for deformation measurement.

Bragg grating was used for the deformation assess-
ment of glued optical fiber at preparation in Fig. [3|
for various size of radius bending in the individual po-
sitions ’1'-"10’. Deformation was zero in position ’0’.
Figure 4 shows the size of deformation at each position.

Two types of standard telecommunications fibers
G.652.D (in primary protection and in a tight
secondary protection) were used for experimental
measurements, and special optical cable SMC-V4 was
also used. This cable is designed for the deformation
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Fig. 4: Deformation of optical fiber with the Fiber Bragg grat-
ing glued on preparation for various size of radius bend-
ing in the individual positions '1’-’10’.

measurement. It provides the maximum sensitivity on
deformation and the ability to detect very small defor-
mations. Individual types of optical fibers were glued
on the test sheet in the longitudinal and the trans-
verse direction (Fig. |p) along its entire length. The
directions were chosen based on previous research [9].
Polymer adhesive MAMUT Glue was used for gluing.
Then measurements were carried out for each arrange-
ment and each condition and each fiber, thus a total
600 repetitions.

deformation

a) b)

Fig. 5: Arrangement of optical fiber.

Distributed system BOTDR is based on measure-
ment of Brillouin scattering, whose frequency is de-
pendent on applied deformation. Figure [6] shows indi-
vidual waveforms of Brillouin frequency depending on
the distance of optical fiber for deformation at posi-
tions '1’ to '10°. Figure shows the waveforms of
Brillouin frequency for longitudinally mounted optical
fiber G.652.D in the primary protection. Figure
shows the waveforms of Brillouin frequency for longitu-
dinally mounted optical cable SMC-V4. In this cable,
the optical fiber is characterized by the shifted Bril-
louin frequency towards lower frequencies (see wave-
form between 3 and 5 m in Fig. |6(b)).
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Fig. 7: The dependence of Brillouin frequency on deformation

in positions 1’ to '10’ for all types of optical fibers and
the arrangement.

Figure [§ shows the comparison of different configu-
rations. The individual curves represent the average
value of the measured data for each configuration and
the type of optical fibers.
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Fig. 8: Comparison of individual configuration and types of op-
tical fibers.

A sensitivity of Brillouin frequency on deformation
and the maximum change of deformation were calcu-
lated for shown arrangement (Tab. .

4. Conclusion

The presented results show that the tested optical
fibers have a small sensitivity to transverse defor-
mation. This sensitivity reaches lower values than
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Tab. 1: The sensitivity of Brillouin frequency on the type of ar-
rangement of the optical fiber during measurement of
deformation and the maximum change of deformation.

Sensitivity Max Brillouin
Configuration change frequency
(kHz/ustrain) (MHz)
G.652.D/
primary/ 53.561 58.09
longitudinal
G.652.D/
primary/ 0.981 1.064
transverse
G.652.D/
secondary/ 90.688 98.356
longitudinal
G.652.D/
secondary/ 0.459 0.497
transverse
SM.C_V.4/ 221.952 240.72
longitudinal
SMC-v4/ -0.733 -0.7995
transverse

1 kHz/pstrain. It can be stated that the tested types
of optical fibers are not suitable for measurement of
transverse deformations. The sensitivity of SMC-V4 is
4.15 times greater than the sensitivity of G.652.D in
the primary protection, and 2.45 times greater than
the sensitivity of G.652.D in tightly secondary pro-
tection in the case of longitudinal deformation. The
ratio of sensitivity is 1.69:1 between the optical fiber
G.652.D with tight secondary protection and primary
protection. An optical cable SMC-V4 is characterized
by shifted of typical Brillouin frequency to lower fre-
quencies about 350 MHz.

This article confirms further the possibility of us-
ing standard single-mode fiber for the measurement of
deformation using apparatus DiTEST STA-R, which
is based on measurement of the Brillouin frequency.
However, there is the significant difference in sensitiv-
ity between the longitudinal and transverse effect of
deformation, which is a hundred times larger in a lon-
gitudinal action than in a transverse action. The article
confirms further the use of standard telecommunication
fibers in security systems, where there is not a big em-
phasis on the measurement accuracy of deformation.
According to the results, this combination offers less
accuracy, but the primary requirement is knowledge
about a disruption of perimeter system. This solution
represents a possible low-cost alternative solution of
perimeter systems using BOTDR systems.
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