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Abstract. The paper describes speed estimators for a
speed sensorless induction motor drive with the direct
torque and flux control. However, the accuracy of the
direct torque control depends on the correct information
of the stator resistance, because its value varies with
working conditions of the induction motor. Hence, a
stator resistance adaptation is necessary. Two tech-
niques were developed for solving this problem: model
reference adaptive system based scheme and artificial
neural network based scheme. At first, the sensorless
control structures of the induction motor drive were im-
plemented in Matlab-Simulink environment. Then, a
comparison is done by evaluating the rotor speed differ-
ence. The simulation results confirm that speed estima-
tors and adaptation techniques are simple to simulate
and experiment. By comparison of both speed estima-
tors and both adaptation techniques, the current based
model reference adaptive system estimator with the ar-
tificial neural network based adaptation technique gives
higher accuracy of the speed estimation.
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1. Introduction

The control and estimation of induction motor drives is
almost an unbounded subject, and the technology has
been developing very strong in last few decades. The
induction motor drive with a cage type of machine has
many applications in industry such as pumps and fans,

paper and textile mills, subway and locomotive propul-
sions, electric and hybrid vehicles, machine tools and
robotics, home appliances, heat pumps and air condi-
tioners, rolling mills, wind generation systems. These
applications often require adjustable speed and wide
power range [1] and [2]. The control methods without
speed encoder can be classified as follows:

• Methods without machine model: estimators with
injection methods and estimators using artificial
intelligence such as neural network [3].

• Methods with machine model [4], [5], [6] and [7]:
open loop estimators, Model Reference Adaptive
System (MRAS) and observers (such as extended
Kalman filter, Luenberger observer, sliding mode
observer). These methods are simple, but sensi-
tive to variations of parameters of induction mo-
tor such as the vector control is very sensitive to
variations in the rotor time constant [8].

2. Speed Estimators with
Stator Resistance
Adaptation

The Direct Torque and Flux control (DTC) has com-
parable performance with the vector control. In this
control scheme, the torque and the stator flux are con-
trolled by selecting voltage space vector of the inverter
through a look-up table. The errors between the com-
mand torque and stator flux with estimated values will
be processed by two hysteresis-band controllers: a flux
controller and a torque controller.

The DTC technique has many advantages such as no
feedback current control, no traditional Pulse Width

c© 2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 267



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 14 | NUMBER: 3 | 2016 | SEPTEMBER

Modulation algorithm, and no vector transformation.
However, the DTC is very sensitive to variation of sta-
tor resistance.

In general, methods of stator resistance estimation
are similar to those utilized for rotor time constant
(rotor resistance) estimation and include application
of observers, extended Kalman filters, model reference
adaptive systems, and artificial intelligence [9]. In this
paper, two MRAS-based adaptation mechanisms with
two MRAS speed estimators are implemented on MAT-
LAB software: Proportional-Integral (PI) controller
and Artificial Neural Network (ANN).

2.1. Reference Frame MRAS

The structure of a reference frame model reference
adaptive system (RF-MRAS) with stator resistance
adaptation for the rotor speed estimation is shown in
Fig. 1. In the reference model, the stator voltages and
stator currents are used for obtaining rotor flux vector
components. In the adaptive model, these components
of the estimated rotor flux vector can be gotten from
stator currents together with the exact value of rotor
speed.

Fig. 1: Structure of RF-MRAS.

The correlative rotor flux vector components from
the reference model and the adaptive model will be
equal in ideal condition (such as the exact knowledge
of stator resistance).

However, the accuracy of this method is decreased
because of parameter variations (such as uncertainty
of stator resistance or rotor time constant). Thus, for
improving the performance of the RF-MRAS scheme,
a stator resistance adaptation mechanism (SRAM) is
added to update stator resistance.

The outputs of reference model and adaptive model
are calculated according to the following equations:

ψRα =
Lr
Lm

∫ (
usα − R̂sisα

)
dt−σLsisα,

ψRβ =
Lr
Lm

∫ (
usβ − R̂sisβ

)
dt−σLsisβ ,

(1)

ψ̂Rα =
∫ (Lm

Tr
isα −

1

Tr
ψ̂Rα − ω̂rψ̂Rβ

)
dt,

ψ̂Rβ =
∫ (Lm

Tr
isβ −

1

Tr
ψ̂Rβ + ω̂rψ̂Rα

)
dt.

(2)

Using the Popov’s criterion for hyperstability for a
globally asymptotically stable system, the rotor speed
adaptation mechanism uses the adaptive signal ξ to
tune the rotor speed:

ξ = ψ̂RαψRβ − ψ̂RβψRα,

ω̂r = KP ξ +KI

t∫
0

ξdt,
(3)

where KP > 0, KI > 0.

2.2. Current Based MRAS

Figure 2 shows the structure of a current-based model
reference adaptive system (CB-MRAS) with the stator
resistance adaptation for the rotor speed estimation.
This MRAS estimator uses stator currents as output
quantities of the reference model [7].

The CB-MRAS scheme has one reference model (sta-
tor currents of induction motor) and two adaptive mod-
els (current model and current estimator).

Fig. 2: Structure of CB-MRAS.

The outputs of current model are also described with
Eq. (2); the outputs of the current estimator are cal-
culated:

îsα = 1
Ti

∫ (
K1usα +K2ψ̂Rα +K3ω̂Rψ̂Rβ − îsα

)
dt,

îsβ = 1
Ti

∫ (
K1usβ +K2ψ̂Rβ −K3ω̂Rψ̂Rα − îsβ

)
dt,

(4)
where:

K1 =
Lr

C1Lm
, K2 =

Lm

C1(LrR̂sTr + L2
m)
,

K3 =
1

C1
, Ti =

LsLr − L2
m

C1Lm
, C1 =

LrR̂s
Lm

+
Lm
Tr

.

(5)

As in RF-MRAS scheme, stator resistance is also
updated by a similar SRAM. Besides that, the voltage
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model is supplemented to obtain components of the
rotor flux vector according to Eq. (1). The following
equation is used by rotor speed adaptation mechanism
for obtaining the rotor speed:

ξ =
(
isα − îsα

)
ψ̂Rβ −

(
isβ − îsβ

)
ψ̂Rα,

ω̂r = KP ξ +KI

t∫
0

ξdt,
(6)

where KPRs > 0, KIRs > 0.

2.3. MRAS-Based SRAMs

The inputs of the stator resistance adaptation mecha-
nisms are outputs of reference and adaptive models for
RF-MRAS (see Fig. 1), or current and voltage models
for CB-MRAS (see Fig. 2). The adaptive signal, de-
rived from the error between two models, is used to es-
timate stator resistance by PI adaptation mechanism:

ξRs =
(
ψRα − ψ̂Rα

)
isα +

(
ψRβ − ψ̂Rβ

)
isβ ,

R̂s = KPRsξRs +KIRs

t∫
0

ξRsdt,
(7)

where KPRs > 0, KIRs > 0.

Equation (7) is discretized into the following equa-
tion with sampling period Ts:

R̂s(k) = R̂s(k − 1) +KPRsξRs(k)

+KIRsTs
ξRs(k) + ξRs(k − 1)

2
. (8)

Equation (9) is produced by generalizing Eq. (8):

R̂s(k) = f
(
ξRs(k), ξRs(k − 1), R̂s(k − 1)

)
. (9)

Based on Eq. (9), an ANN adaptation mechanism is
proposed as in Fig. 3.

Fig. 3: Structure of ANN adaptation mechanism.

This feed-forward neural network has three layers:
one input layer with three neurons (three parameters

of f), one hidden layer with M neuron(s) (3M input-
hidden weights andM hidden-output weights), and one
output layer with one neuron (estimated value of stator
resistance). The signal propagation process from the
neurons of input layer to the neuron of output layer is
done:

Y netj(k) =
3∑
i=1

Wzji(k)Zi(k),

Y outj(k) = f1(Y netj(k)),

Rnet(k) =
M∑
j=1

Wyj(k)Y outj(k),

R̂s(k) = Rout(k) = f2(Rnet(k)),

(10)

where:
Z1(k) = ξRs(k),
Z2(k) = ξRs(k − 1),

Z3(k) = R̂s(k − 1),
f1(x) = 2

1+e−x − 1,

f2(x) = Rs

1+e−x + 0.5Rs.

. (11)

Function f2 is chosen with assumption that
R̂s ∈ (0.5Rs; 1.5Rs). The cost function E is minimized
by updating weights of ANN according to Eq. (12):

E(k) = 1
2

[
R̄s − R̂s(k)

]2
,

Wyj(k + 1) = Wyj(k)− η(k) · ∂E(k)
∂Wyj(k)

,

Wzji(k + 1) = Wzji(k)− η(k) · ∂E(k)
∂Wzji(k)

(12)

where η(k) > 0 is the learning rate, and:

∂E(k)
∂Wyj(k)

= C2C3Y outj(k),

∂E(k)
∂Wzji(k)

=
C2C3Wyj(k)(1−Y out2j (k))·Zi(k)

2 ,

C2 = −(R̄s − R̂s(k)),

C3 = (Rout(k)−0.5Rs)(1.5Rs−Rout(k))
Rs

.

(13)

The term C2 is unknown. Assume that
ζRs(k) ≈ ζRs(k−1), based on Eq. (8), this term can be
replaced with the term ζRs(k), and for faster conver-
gence C2 = |ζRs(k)|ζRs(k). In this network, learning
rate is also adapted by the following rule:

∆E(k) = Z2
1 (k)− Z2

2 (k),

η(k + 1) =

 η(k) + 0.005, if ∆E(k) < 0,
η(k)− 0.005η(k), if ∆E(k) > 0,
η(k), otherwise,

(14)
where:

∆E(k) = Z2
1 (k)− Z2

2 (k). (15)

3. Simulation Results

The designed control algorithms were simulated in sen-
sorless control structure of the induction motor drive
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using Matlab-Simulink. Time courses of important
quantities were obtained from the control structure
with two MRAS speed estimators and two SRAMs at
the jump of the load torque TL = 2 Nm (see Fig. 4).
The results in Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9,
Fig. 10 are done with R̄S = 1.2RS , M = 1 and ini-
tial values of weights in ANN are random real number
in range (−10−3, +10−3). Table 1 and Tab. 2 shows a
comparison in maximum value of absolute of speed dif-
ference (MSD), steady-state error of estimated stator
resistance (ESSR), maximum value of estimated stator
resistance (MESR), root mean square error between
reference torque and motor torque (RMSET).

Tab. 1: Comparison with RF-MRAS speed estimator.

Quantity PI
ANN with

M-neuron hidden layer
1 2 3 4 5

MSD
[rpm] 3.76 3.41 3.41 3.4 3.4 3.4

ESSR
[×10−4Rs]

75 64.1 41.3 28.4 24.6 18.2

MESR
[×Rs]

1.28 1.48 1.49 1.49 1.49 1.49

RMSET
[Nm] 0.27 0.27 0.27 0.27 0.26 0.27

Tab. 2: Comparison with CB-MRAS speed estimator.

Quantity PI
ANN with

M-neuron hidden layer
1 2 3 4 5

MSD
[rpm] 1 0.54 0.97 0.77 0.74 0.85

ESSR
[×10−4Rs]

2 0.33 1.2 0.14 0.12 0.1

MESR
[×Rs]

1.28 1.48 1.49 1.49 1.49 1.5

RMSET
[Nm] 0.26 0.26 0.26 0.26 0.26 0.26

Fig. 4: Reference speed and load torque.

Fig. 5: RF-MRAS with PI (blue) and ANN (green) adapta-
tion mechanisms, difference between real speed and es-
timated speed.

Fig. 6: CB-MRAS with PI (blue) and ANN (green) adapta-
tion mechanisms, difference between real speed and es-
timated speed.

R
/R

S
S

Fig. 7: RF-MRAS with PI (blue) and ANN (green) adaptation
mechanisms, ratio between estimated value and known
value of stator resistance.

R
/R

S
S

Fig. 8: CB-MRAS with PI (blue) and ANN (green) adaptation
mechanisms, ratio between estimated value and known
value of stator resistance speed.
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The first rows of Tab. 1 and Tab. 2, Fig. 5 and
Fig. 6 show that ANN mechanism gives smaller MSD
than PI mechanism, MSD of CB-MRAS is smaller
than that of RF-MRAS, and CB-MRAS with ANN
mechanism (with only one-neuron in hidden layer) pro-
duces the smallest MSD. PI mechanism gives larger
ESSR and smaller MESR (smaller overshoot) than
ANN one does, and approximate-zero ESSR belongs to
CB-MRAS with ANN mechanism as shown in Fig. 7
and Fig. 8 and the second and third rows of Tab. 1 and
Tab. 2.

Fig. 9: RF-MRAS (blue) and CB-MRAS (green) with PI adap-
tation mechanism, motor torque.

Fig. 10: RF-MRAS (blue) and CB-MRAS (green) with ANN
adaptation mechanism, motor torque.

Fig. 11: RF-MRAS (blue) and CB-MRAS (green) with PI
adaptation mechanism, motor speed.

Fig. 12: RF-MRAS (blue) and CB-MRAS (green) with ANN
adaptation mechanism, motor speed.

RMSET of both MRAS schemes with two SRAMs
are almost equal (the fourth rows of Tab. 1 and Tab. 2),
but motor torque and motor speed time courses of CB-
MRAS are smoother than those of RF-MRAS (Fig. 9,
Fig. 10, Fig. 11, Fig. 12).

4. Conclusion

The MRAS-based speed sensorless induction motor
drive with the direct torque control was presented in
the paper. The DTC drive with two MRAS estimators
together with two MRAS-based SRAMs gave good dy-
namic responses and the estimation of the rotor speed
was good in steady state and also in transient state.
The CB-MRAS scheme gave higher accuracy of the ro-
tor speed estimation than the RF-MRAS scheme, and
the ANN mechanism gave higher accuracy of the stator
resistance adaptation than the PI mechanism. How-
ever, response of the stator resistance estimation for
ANN adaptation mechanism at beginning times is not
good and should be improved. The CB-MRAS esti-
mator with both MRAS-based SRAMs could be used
for speed estimation with the uncertainty of stator re-
sistance without speed encoder in the control system
with digital signal processor. The simple MRAS-based
ANN adaptation mechanism with only one-neuron hid-
den layer can be applied for estimating other parame-
ters of induction motor.
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Appendix: Induction Motor Drive
Quantities and Parameters

• usα, uRβ , isα, isβ , îsα, îsβ , ψRα, ψRβ , ψ̂Rα, ψ̂Rβ :
α, β components of stator voltage vector, stator
current vector, estimated stator current vector, ro-
tor flux vector, estimated rotor flux vector,

• ωr, ω̂r, Te, TL: rotor speed, estimated rotor speed,
motor torque, load torque,

• Rs: stator resistance value (Rs = 1.115 Ω),
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• Rr: rotor resistance (Rr = 1.083 Ω),

• R̄s, Rs: real value and estimated value of stator
resistance,

• Lm, Ls, Lr: magnetizing inductance (Lm = 0.2037
H), stator inductance (Ls = 0.2097 H), rotor in-
ductance (Lr = 0.2097 H),

• Tr, J , σ, p: rotor time constant (Tr = 0.1936
s), moment of inertia (J = 0.02 kg·m2),

total leakage constant (σ = 0.0562), number of
pole pairs (p = 2),

• ζ, KP , KI : adaptive signal, proportional coef-
ficient (KP = 2000), integral coefficient (KI =
1000000) of MRAS speed estimators,

• ζRs, KPRs, KIRs: adaptive signal, proportional
coefficient (KPRs = 10), integral coefficient (KIRs

= 1000) of stator resistance adaptation mecha-
nisms.
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