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Abstract. Producing a mathematical model with high
accuracy is the first and important step in control of
systems. Nowadays fractional calculus has been in the
spotlight and it has a lot of application especially in
control engineering. Fractional modelling on one of the
conventional converters is done in this paper. Frac-
tional state space model and related fractional transfer
functions for a fractional DC/DC Buck converter is
established and achieved results are compared to inte-
ger order models. At the end of this paper Oustaloup’s
recursive approximation is introduced and imposed for
one of gathered fractional transfer function.
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1. Introduction

The irregular pollution of fossil fuel energy and climate
changing with greenhouse gases have put renewable en-
ergy sources in the spotlight [1]. Wind turbines in both
offshore and onshore are one of the most impressive
approach for producing energy with renewable sources
[1]. Standalone wind turbine systems are recommended
and useful in remote area and other locations with suit-
able potential of wind speed. In standalone systems,
battery absorbs the produced electricity by wind tur-
bine and charge control tasks to ensure stability and
reach MPPT [2]. Full-power converters mostly with

PMSG are used in variable speed wind turbines [3]. In
stand-alone systems DC/DC converters are one of the
most important component which are playing and vital
role.

The main purpose of DC/DC power electronic con-
verters which are applied widely in switching power
supplies and dc motor’s drives is to control the ampli-
tude of output voltage and current. In many cases the
input power is unregulated and control scheme is essen-
tial to yield a regulated and appropriate output power
[4]. Most of the engineers and researches have con-
sidered integer order models for all systems including
power electronic systems and devices which are made
up of fractional components in nature [5]. During the
last few decades’ fractional calculus has opened new
horizons in all engineering branches. It seems neces-
sary to replace integer order modeling analysis and
modeling by fractional order. The conventional wis-
dom is that the electrical elements like inductors and
capacitors are integer order in nature but the reality is
different. Lots of researches have been done in order to
prove the fractionality of electrical elements. In [6], [7],
[8] and [9] Wesrelund et al. measured practically the
fractional order of capacitors and inductors with dif-
ferent dielectrics and core coil. For instance, at 1 kHz
frequency and room temperature. They found that the
fractional order is 0.9776 for capacitor with polyvinyli-
denefluoride as dielectric or 0.99911 for capacitor with
polysulfide as dielectric and some other capacitor with
different dielectric was measured and also 0.97 is the
amount of fractionality which gathered for an induc-
tor with air core coil. The fractional property is not
terminating to electrical elements and it’s possible to
expand it to all systems. Fractional order modeling is
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more accurate than integer order model in many real
dynamical circuits [7]. The common integer order mod-
els for many electrical circuits are accurate enough be-
cause the inductors and capacitors which exist in mar-
kets are in fractional order of near 1but for circuits
which are made up of fractional components it’s essen-
tial to describe by fractional order models although in
general fractional order modeling can cause more ac-
curacy even for systems with integer order components
[8]. It’s proved that all systems have fractional char-
acteristic in nature but they are different in amount
of being fractional thus integer order models can de-
scribe features of many systems which have less frac-
tionalities [9]. In this paper an assumptive fractional
order Buck converter is modeled and frequency analy-
sis upon achieved fractional order transfer function is
done. Fractional model for Buck converter is compared
with integer order model and the gathered results are
shown in figures. The perturbation of inductor current
and capacitor voltage is computed for fractional Buck
converter and finally Oustaloup’s recursive approxima-
tion is done for one of gathered transfer function.

2. Fractional Calculus

More than three centuries fractional calculus was con-
sidered as a theoretical field without any practical ap-
plications but during the last three decades this mathe-
matical branch has become more common and useful in
lots of sciences and engineering fields such as reaction-
diffusion system, electrical circuits, rotor bearing sys-
tem, finance system, biological system, thermoelectric
system, and so on [11]. Perhaps in near future conven-
tional calculus replace by fractional calculus because
of its ability to expand usual controllers in order to
achieve better performance [12]. Over the last few
years the applications of fractional control spread out
due to its robust performance [13]. Some fractional
definitions which are used in this paper are presented
in following equations.

Definition 1 Rieman-Liouville fractional order inte-
gral is defined as bellow,

Iαc F (t)
∆
=

1

Γ(α)

t∫
c

(t− τ)α−1f(τ)dτ,

t > c, α ∈ R+,

(1)

Γ(.) is the Gamma function and α is the order of frac-
tionality.

Definition 2 Most of the definition in fractional cal-
culus relies on Gamma function which is well known
[13]. The definition of Gamma function for real posi-

tive number is presented in Eq. (2) [18].

Γ(n) =

∫ ∞
0

e−uun−1du. (2)

Remark 1 If n belongs to natural numbers, Eq. (2)
will change into factorial form [13].

Γ(n) = (n− 1)!, n ∈ N. (3)

Note that, substituting α by R− in order to reach frac-
tional order differential operator is not allowable.

Definition 3 Rieman-Liouville definition for the frac-
tional order derivative of order α ∈ R+ has the follow-
ing form,

RD
αf(t)

∆
= DmIm−αf(t) =

=
dm

dtm

[
1

Γ(m− α)

t∫
0

f(τ)

(t− τ)α−m−1
dτ

]
,

(4)

where m− 1 < α < m, m ∈ N and R is the represen-
tativeness of Rieman-Liouville definition.

Definition 4 Caputo derivative is defined as Eq. (5).

cD
αf(t)

∆
= Im−αDmf(t) =

=
1

Γ(m− α)

t∫
0

fm(τ)

(t− τ)α−m+1
dτ,

(5)

where m−1 < α < m, m ∈ N and C shows the Caputo
definition.

Definition 5 Laplace transform is the next operator
which is used in this paper. It is given for Caputo
fractional-order derivative as defined in Eq. (6).

` [cD
αf(t)] = sαF (s)−

m−1∑
k=0

sα−k−1f (k)(0). (6)

Definition 6 Another significant definition is Mittag-
Leffler function which is playing the role of an expo-
nential function in integer order response [10]. One-
parameter and two parameters Mittag-Leffler function
is introduced in following Eq. (7).

Eα(t) =
∞∑
k=0

tk

Γ(αk + 1)
,

Eα,β(t) =
∞∑
k=0

tk

Γ(αk + β)
,

<(α) > 0, <(β) > 0,

(7)

E(.) is the Mittag-Leffler function.
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3. State Space Model

Figure 1 shows the main scheme of a DC/DC Buck con-
verter which is controlled by Pulse Width Modulation
(PWM) unit.

PWM

V
in

D C R

L

Fig. 1: Shows the circuit of DC/DC Buck converter.

In Eq. (8) and Eq. (9) the well-known equations
which present the relationship between voltage and
current of inductor and capacitor in fractional order
condition is expressed respectively [8].

VL(t) = L
dαIL(t)

dtα
. (8)

IC(t) = C
dβVC(t)

dtβ
. (9)

In which α, β indicates the fractional order of in-
ductor and capacitor respectively. Capacitor voltage
and inductor current consider as state space parame-
ters and input voltage is allocated as input vector.

X =

[
iL(t)
vC(t)

]
, U = [Vin(t)]. (10)

By using the following steps averaged model will be
established. Two modes consider for DC/DC Buck con-
verter, switch on and switch off mode.

3.1. Switch ON Mode

Vin C R

L

vC(t) v0(t)

iC(t)

i0(t)iL(t) node(1)

loop(1)

Fig. 2: Buck converter circuit in switch on mode.

Equation (11) is achieved by imposing voltage rule
on circuit which is drawn in Fig. 2.

L
dαiL(t)

dtα
= vin(t)− v0(t)

→ dαiL(t)

dtα
=
vin(t)

L
− v0(t)

L
,

(11)

Equation (12) also is the result of imposing current rule
on circuit which is drawn in Fig. 2.

C
dβvC(t)

dtβ
= iL(t)− vC(t)

R

→ dβvC(t)

dtβ
=
iL(t)

C
− vC(t)

RC
,

(12)

State space model can be written as bellow,
dαiL(t)

dtα

dβvC(t)

dtβ

 =

 0 − 1

L
1

C
− 1

RC

[ iL(t)

vC(t)

]
+

 1

L

0

 vin(t),

[v0(t)] = [0 1]

[
iL(t)

vC(t)

]
, (13)

therefore

A1 =

 0 − 1

L
1

C
− 1

RC

 , B1 =

 1

L

0

 ,
C1 =

[
0 1

]
, D1 = 0.

(14)

3.2. Switch OFF Mode

In this condition the same procedure as former condi-
tion is applied. Diode is passed the current as a short
circuit path.

C RvC(t) v0(t)

iC(t)

i0(t)iL(t)

L

vL(t)

Fig. 3: Buck converter circuit in switch off mode.

Voltage rule:

vC(t) = −Ld
αiL(t)

dtα
→ dαiL(t)

dtα
= −vC(t)

L
. (15)
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Current rule:

iC(t) = iL(t)−i0(t)→ dβvC(t)

dtβ
=
iL(t)

C
− vC(t)

RC
. (16)

Equation (15) and Eq. (16) is used to reach the state
space model of DC/DC Buck converter in switch off
mode condition.

dαiL(t)

dtα

dβvC(t)

dtβ

 =

 0 − 1

L
1

C
− 1

RC

[ iL(t)

vC(t)

]
+

[
0

0

]
vin,

[v0(t)] =
[
0 1

] [ iL(t)

vC(t)

]
+ [0]vin. (17)

Thus,

A2 =

 0 − 1

L
1

C
− 1

RC

 , B2 =

[
0

0

]
,

C2 =
[
0 1

]
, D2 = 0.

(18)

As can be seen in fractional state space model which
was obtained for DC/DC Buck converter, the addi-
tional parameters (α, β) indicates the fractional order
of inductor and capacitor respectively and in compari-
son to integer order model it is more complicated but
this complexity lead us to more accuracy.

4. Averaged State Space
Model of Fractional Order
Buck Converter

According to averaging formula, it’s possible to substi-
tute averaged value of each parameter in state space
model of DC/DC Buck converter.

〈
x(t)

〉
T

=
1

T

t+T∫
t

x(τ)dτ, (19)

where x is an arbitrary variable of the Buck converter.

By averaging a circuit variable over a period of
switching, all the high frequency switching harmonics
will be removed [7].

dα
〈
x(t)

〉
T

dtα
=

〈
dαx(t)

dtα

〉
T

. (20)

Equation (20) can be proved easily [7].

Each variable of Buck converter is made up of AC
and DC components which are presented in Eq. (21).〈
iL(t)

〉
= IL + îL(t),

〈
vC(t)

〉
= VC + v̂C(t),〈

vin(t)
〉

= Vin + v̂in(t),
〈
d(t)

〉
= D + d̂(t),

(21)

where IL and îL(t) are DC and AC component of in-
ductor current respectively.

It’s time to build the averaged state space model of
Buck converter by using Eq. (14) and Eq. (18) which
depend on switch ON and switch OFF mode.

d(t) =
Ton
T
, d′(t) =

Toff
T

, d(t) + d′(t) = 1,

A = d(t)A1 + d′(t)A2,

B = d(t)B1 + d′(t)B2,

C = d(t)C1 + d′(t)C2.

(22)

Thus,

A = d(t)

 0 − 1

L
1

C

1

RC

+ d′(t)

 0 − 1

L
1

C

1

RC

 =

=

 0 − 1

L
1

C

1

RC

 .
(23)

B and C matrices are gathered as same as A.

B = d(t)

 1

L

0

+ d′(t)

[
0

0

]
=

d(t)

L

0

 ,
C = d(t)

[
0 1

]
+ d′(t)

[
0 1

]
=
[
0 1

]
.

(24)

Hence, the averaged state space model can be written
as follow according to Eq. (23) and Eq. (24).

dαiL(t)

dtα

dβvC(t)

dtβ

 =

 0 − 1

L
1

C
− 1

RC

[ iL(t)

vC(t)

]
+ . . .

. . .+

d(t)

L

0

 vin(t).

(25)

Equations (20) and Eq. (21) are used in the averaged
state space model of DC/DC Buck converter.
dα 〈iL(t)〉

dtα

dβ 〈vC(t)〉
dtβ

 =

 0 − 1

L
1

C
− 1

RC

[〈iL(t)〉

〈vC(t)〉

]
+ . . .

. . .+


〈
d(t)

L

〉
0

 〈vin(t)〉 .

(26)
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The averaged value of used variables in Eq. (21) is
replaced by their AC and DC components then the
Eq. (27) is reached.

dα(IL + îL(t))

dtα

dβ(VC + v̂C(t))

dtβ

 =

 0 − 1

L
1

C
− 1

RC

 · . . .

·

[
IL + îL(t)

VC + v̂C(t)

]
+

D + d̂(t)

L

0

 [Vin + v̂in(t)
]
.

(27)

5. DC Analysis

In DC analysis, AC value of variables will be omitted
and each averaged value substitute by its DC compo-
nent. Due to being zero in Caputo derivative of DC
component, the following equation can be achieved.

0 = A

[
IL

VC

]
+ BU, (28)

[
IL

VC

]
= −A−1BU,[

IL

VC

]
= −

−LR C

−L 0

DL
0

Vin. (29)

Finally,

→

[
IL

VC

]
=

DVinR

DVin

 . (30)

6. Small Signal Analysis

By omitting the derivative of DC component of vari-
ables and multiplied small signal component in small
signal analysis, AC part of equations is derived [15].

dαîL(t)

dtα
=

1

L

(
−v̂C(t) +Dv̂in(t) + d̂Vin

)
, (31)

dβ v̂C(t)

dtβ
=

1

C

(
îL(t)− 1

R
v̂C(t)

)
. (32)

Averaged state space model for small signal analysis
rewrite as bellow.

dαîL(t)

dtα

dβ v̂C(t)

dtβ

 =

 0 − 1

L
1

C
− 1

RC

[ îL(t)

v̂C(t)

]
+ . . .

. . .+

DL
0

 v̂in(t) +

VinL
0

 d̂(t).

(33)

In order to analyze nonlinear circuits by linear meth-
ods, it’s essential to find out the transfer function of
nonlinear systems with linearization for linear analysis
then achieved results are able to impose on exact and
nonlinear models. By assuming zero initial condition
and using the definition of Caputo derivative, calcula-
tion of transfer functions for DC/DC Buck converter
is mentioned as follow.

By imposing Laplace transform to Eq. (31) and
Eq. (32) following statements can be reached.

sαîL(s) = − 1

L
v̂C(s) +

D

L
v̂in(s) +

vin
L
d̂(s), (34)

îL(s) = Csβ v̂C(s) +
1

R
v̂C(s). (35)

By substituting Eq. (35) into Eq. (34) and equalizing
to zero, transfer function of output voltage to input
voltage will be gathered.

sα
(
Csβ v̂C(s) +

1

R
v̂C(s)

)
= − 1

L
v̂C(s) +

D

L
v̂in(s)

→ v̂C(s)

(
Csα+β +

1

R
sα +

1

L

)
=
D

L
v̂in(s). (36)

Thus,

Gv̂0−v̂in =
v̂0(s)

v̂in(s)
| d̂(s)=0 =

D

LCsα+β +
L

R
sα + 1

. (37)

In order to explain the relationship between output
voltage and duty cycle, Eq. (35) is substituted into
Eq. (34) and in this part perturbation of input voltage
is ignored.

Csα+β v̂C(s) +
1

R
sαv̂C(s) = − 1

L
v̂C(s) +

Vin
L
d̂(s)

→ v̂C(s)

(
Csα+β +

1

R
sα +

1

L
=
Vin
L
d̂(s)

)
. (38)

Therefore,

Gv̂0−d̂(s) =
v̂0(s)

d̂(s)
| v̂in(s)=0 =

=
Vin

LCsα+β +
L

R
sα + 1

.
(39)

From Eq. (35),

îL(s) = Csβ v̂C(s) +
1

R
v̂C(s)

→ Gv̂C−îL =
v̂C(s)

îL(s)
+

R

RCsβ + 1
.

(40)

Equation (40) shows the transfer function of output
voltage to inductor current.
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7. Computation of Inductor
Current

As mentioned before, there are two modes operation
in DC/DC Buck converter. In this research Continues
Condition Mode (CCM) is considered. In this condi-
tion the inductor current never touches zero value and
always has an amount.

ILmax

I
0

ΔIL

Ton
Toff

T

t

IL

Fig. 4: Inductor current of DC/DC Buck converter.

T indicates the period of switching in ms.

Figure 4 shows the perturbation of inductor current
in CCM mode operation. Computational method for
finding inductor current is presented as follow. During
the period which switch is on (Ton), variation of induc-
tor current based on fractional calculus is as bellow:

vL(t) = L
dαiL(t)

dtα
,

vL(t) = vin(t)− v0(t).

(41)

By averaging the both side of Eq. (41) next state-
ment is gathered.

〈vL(t)〉 = L
dα 〈iL(t)〉

dtα
,

→ 〈vin(t)− v0(t)〉
L

=
dαîL(t)

dtα
.

(42)

By imposing fractional integrator of order α to both
sides of Eq. (42), the next statement will be reached.

IαC
〈vin(t)− v0(t)〉

L
= Iα

(
dαîL(t)

dtα

)
= ∆IL(t). (43)

By assuming that variation of output voltage and input
voltage is almost constant and using Caputo definition
for integrator, the left side of Eq. (43) can be written
as Eq. (44).

IαC
〈vin(t)− v0(t)〉

L
=

=
1

Γ(α)

〈vin(t)− v0(t)〉
L

DT∫
0

(t− τ)α−1dτ.

(44)

DT shows the time which switch is on in (ms) and D is
the DC component of duty cycle. In order to get into
closed relation for above equation, firstly it’s necessary
to expand the inner expression of integrator which is
used in Eq. (44) by Taylor expansion around zero point
then calculate fractional integrator of order α. Matlab
is used in this section.

∆IL =
(vin − v0)(DT )α

Γ(α)L
. (45)

Easily can be seen in Fig. 4 the maximum amount of
inductor current.

ILmax = IL +
1

2
∆IL,

ILmax =
Dvin
R

+
1

2

(vin − v0)

Γ(α)L
(DT )α.

(46)

Equation (45) and Eq. (46) indicates that the amount
of inductor current and its variation depends on not
only inductance of inductor but also the amount of
fractional order of inductor.

8. Computation of Capacitor
Voltage

One of the most important factors for designing Buck
converters in order to find the value of inductance and
capacitance of inductor and capacitor respectively is
the amount of inductor current and capacitor voltage
perturbation. Variation of inductor current mentioned
in pervious section and capacitor voltage is explained
in this section. In Fig. 1 following statement is obvious.

iC(t) = −i0(t) + iL(t),

→ dβvC(t)

dtβ
= −vC(t)

R
+
iL(t)

C
.

(47)

By using Eq. (47) it’s possible to gather the capacitor
voltage. Adomian decomposition method is used in [7],
[8] and [9] in order to solve the fractional differential
equation. This method is a very strong approach for
solving the nonlinear equations in case of linear analyt-
ically and also it’s possible to use it for such Fractional
Differential Equation (FDE) [16]. Due to have a so-
lution for Eq. (47) Adomian decomposition method is
used. The general form of fractional equation which is
solved by Adomian decomposition method is available
in Eq. (48).

Dαx(t) = Ax(t) + f(t),

0 < α < 1, 0 < t < T,
(48)

f(.) is a function of time and A is a coefficient for x.
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Mentioned method in case of Caputo fractional
derivative for solving the Eq. (48) is as follow [17].

x(t) = xh(t) + xp(t),

xh(t) = Eα,1(Atα)C,

xp(t) = tα−1Eα,α(Atα) · f(t),

(49)

where C is the initial condition and E is the Mittag-
Leffler function.

Note that the following condition must be satisfied.

∃ ε > 0, M > 0, β > −α. (50)

Such that, |fi(t)| ≤Mtβ .

During the period which switch is on, Eq. (51) is solved.
Note that the Eq. (51) for both periods which switch
is on and off is the same because of circuit topology.

DβVC(t) = −VC(t)

RC
+
iL(t)

C
. (51)

Equation (52) shows the numerical solution of Eq. (51)
according to Adomian decompodition method which
mentioned in Eq. (49).

V (t) = Eβ,1

(
− tβ

RC

)
V0 + . . .

. . .+ tβ−1Eβ,β

(
tβ

RC

)
· iL(t)

C
.

(52)

According to Fig. 5 it’s possible to find out the output
voltage variation [4]. Output voltage and capacitor
voltage are the same.

v
C

ΔV
CV

C

DT

2

(1- )D

2 T

Fig. 5: Capacitor voltage of DC/DC Buck converter.

V

(
DT

2

)
= Eβ,1

−
(
DT

2

)β
RC

V0 +

(
DT

2

)β−1

. . . Eβ,β

−
(
DT

2

)β
RC

 · iL
DT

2
C

. (53)

And,

V

(
1−D

2
T

)
= Eβ,1

−
(

1−D
2

T

)β
RC

V0 + . . .

+

(
1−D

2
T

)β−1

+ Eβ,β

−
(

1−D
2

T

)β
RC

 . . .

·
iL

(
1−D

2
T

)
C

. (54)

As it can be seen in Fig. 5 the amount of inductor

current in
DT

2
,

(1−D)

2
T is the same approximately.

Therefore,

∆V = V

(
1−D

2
T

)
− V

(
D

2
T

)
,

I

(
1−D

2
T

)
≈ I

(
D

2
T

)
.

(55)

Then,

∆V =

Eβ,1
−

(
1−D

2
T

)β
RC

 . . .

−Eβ,1

−
(
D

2
T

)β
RC


V0 ·

I0
C
· . . .


(

1−D
2

)β−1

Eβ,β

−
(

1−D
2

T

)β
RC

 . . .

−
(
D

2
T

)β−1

Eβ,β

−
(
D

2
T

)β
RC


 .

(56)

9. Approximation

It’s possible to describe the dynamical behavior of
a fractional order transfer function by an integer order
transfer function. Approximation is important because
of the numerical solution methods for integer order dif-
ferential equations are more known and available and
also it can found in a lot of common software [13].
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9.1. Oustaloup’s Recursive
Approximation

Mentioned filter is capable to approximate a fractional
transfer function with high accuracy. For instance frac-
tional element sα will be described by (2N + 1) integer
zeros and poles during the specified frequency interval
[ωl, ωh].

sα = K

N∏
k=−N

s+ ω′k
s+ ωk

. (57)

Such that,

ωk = ωl

[
ωh
ωl

]K+N+1
2
(1+α)

2N+1

,

ώk = ωl

[
ωh
ωl

]K+N+1
2
(1−α)

2N+1

,

K = (ωh)α.

(58)

The order of mentioned filter is (2N+1) and by impos-
ing each input signal to approximated integer transfer
function, the output signal will be the response of frac-
tional transfer function [14].

10. Simulation Results

A Buck Converter with following features is assumed:

• L = 0.236 mH,

• C = 47 mF,

• R = 0.1 Ω,

• Vin = 28− 70 V,

• Output voltage 24 V,

• Switching frequency 30 kHz.

The main reason of current essay is to express the im-
portance of fractional modeling for a fractional system
in nature. It’s assumed that is possible to have frac-
tional elements like capacitor and inductor although
it’s not valid in real world up to now. In order to
achieve this purpose, Buck converter with above fea-
tures which used in a 1 kW vertical axis wind tur-
bine assumed but the amount of fractionality for its
elements (α, β) is hypothetical values duo to the men-
tioned Buck converter is made up of integer order com-
ponents and integer order model has accurate enough
for this system. In this section a comparison is done
on fractional modeling and integer modeling for studied
system. Bode diagram which is mentioned in Fig. 6 is
related to transfer function of output voltage to input
voltage.

GV̂0−V̂in =
0.352

1.1092e− 5s+ 2.36e− 3s0.5 + 1
,

α = β = 0.5.

(59)

Equation (59) is gathered by replacing the buck pa-
rameters into Eq. (37) and the averaged value for duty
cycle is considered as D = 0.352.

If the fractional characteristic of mentioned Buck
converter is omitted, the quantity of (α, β) will be
equaled to 1 and Eq. (59) is converted to an integer or-
der model of Buck converter which is well known equa-
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Fig. 6: Frequency response of fractional and integer order model.
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Fig. 7: Frequency response of fractional and integer model.

tion but in this part fractional characteristic is consid-
ered for Buck converter and this feature is represented
by (α, β).

Fractional operation and simulation can be done eas-
ily in Matlab. Some important commands are pre-
sented: Fotf, Fomcon, Bode, Oustapp, Plot.

As can be seen in Fig. 6 integer order modeling for
a system which is fractional order in nature (transfer
function which mentioned in Eq. (59) causes remark-
able difference between real system and integer mod-
eled system.

Frequency analysis has been done on another men-
tioned transfer function.Assume that the DC value of
input voltage is 50 V and fractional order of inductor
and capacitor are 0.7 therefore,

GV̂0−d̂(s) =
50

1.1092e− 5s1.4 + 2.36e− 3s0.7 + 1
,

α = β = 0.7. (60)

Figure 7 indicates the frequency response of Eq. (60).

The value of (α, β) is hypothetical and just used
for simulation and comparison. In order to establish-
ing the fractional order controllers and modeling frac-
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Fig. 8: Frequency response of approximated transfer functions.
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Fig. 9: Frequency response of the most accurate approximation.

tional systems in practical way, it’s essential to convert
them into integer order transfer function. As men-
tioned before Oustaloup’s recursive approximation can
be employed to approximate a fractional order trans-
fer function during a specific frequency interval with
(2N + 1) zeros and poles. Here GV̂C−îL with β = 0.7
is considered and approximated by third and fifth in-
teger order transfer function and then their frequency
response are compared with the frequency response of
fractional transfer function which gathered by using
Matlab. As can be seen in Fig. 8 by increasing the
order of approximated transfer function the amount of
error is decreased.

GV̂C−îL =
0.1

4.7e− 3s0.7 + 1
, (61)

TF =
2.67e− 4(s+ 3.16e+ 6)(s+ 1468)(s+ 0.6813)

(s+ 2.25e+ 4)(s+ 554)(s+ 0.6764)
.

(62)
Equation (62) shows a third integer order model which
approximated for GV̂C−îL in Eq. (61). In practical ap-
plications, it’s not possible to use fractional equations
or controllers and converting into integer order equa-
tions and controllers which are the same in character-
istics is essential.

In order to have a model with high accuracy an
eleventh order approximated transfer function is cho-
sen and is compared by fractional transfer function
which is achieved by Matlab.

Figure 9 shows the comparison between eleventh or-
der transfer function which approximated for G and
fractional order transfer function (G).

In order to emphasis the importance of fractional
order modeling for a fractional order Buck converter,
real time simulation was done and compare to integer
order model with the same duty cycle. Closed loop
transfer function for both Eq. (63) and Eq. (64) was
gathered and their step response is ploted.

GV̂0−V̂in =
0.352

1.1092e− 5s+ 2.36e− 3s0.5 + 1
,

α = β = 0.5. (63)

GV̂0−V̂in =
0.352

1.1092e− 5s2 + 2.36e− 3s+ 1
. (64)

Equation (63) and Eq. (64) show the fractional order
model and integer order model of fractional order Buck
converter with (α = β = 0.5) respectively.

Input voltage is 70 V for simulation.
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Fig. 10: Fractional order in comparison to integer order model.

Figure 10 shows the closed loop response to constant
input voltage and the same duty cycle was imposed to
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both integer and fractional order model. As mentioned
befor, assumed Buck converter was fractional in nature
(α = β = 0.5) then the fractional and integer order
model has some differences in output response. Inte-
ger order model for fractional Buck converter caused
modeling error and its not accurate enough.

11. Conclusion

Although fractional calculus related to a few centuries
ago but its useful and important applications are in
center of attention especially in engineering nowadays.
As mentioned before all systems and components are
fractional in nature, but they are different in amount
of fractionality [9]. In this paper a DC/DC Buck con-
verter with fractional order components was assumed
and frequency analysis along the linear modeling is
done. The remarkable difference between integer or-
der model and fractional order model can be seen eas-
ily, but for lots of systems integer order modeling is
satisfied our purposes and they have enough accuracy
because fractionality order of their elements such as ca-
pacitors and inductors are near to one. It doesn’t mean
the fractional order modeling is useless because it can
describe the characteristics of systems and circuits with
more accuracy but for common and available systems,
integer order has enough accuracy. If an extra finesse
is required or fractional order elements with fractional-
ity far from one is used, then fractional order modeling
will be essential. At the end of research, real time
comparison was done for closed loop transfer function
of output voltage to input voltage of Buck converter al-
though designing of controller was not the research pur-
pose. Establishing the fractional order model for Buck
converter and comparing it to integer order model was
the main goal for this research but Fig. 10 shows the
non-negligible error in real time simulation for closed
loop system which is caused by modeling accuracy. It’s
obvious that integer order model for a fractional order
Buck converter with (α = β = 0.5) is not a suitable
model and makes error.
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