APPLICATION OF Cl₂/BCl₃/Ar PLASMA TREATMENT IN THE IMPROVEMENT OF Ti/Al/Mo/Au OHMIC CONTACTS

Jacek GRYGLEWICZ, Wojciech MACHERZYNSKI, Andrzej STAFINIAK, Bogdan PASZKIEWICZ, Regina PASZKIEWICZ

Department of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw, Poland

jacek.gryglewicz@pwr.edu.pl, wojciech.macherzynski@pwr.edu.pl, andrzej.stafiniak@pwr.edu.pl, regina.paszkiewicz@pwr.edu.pl

DOI: 10.15598/aeee.v14i2.1589

Abstract. Significant improvement of Ti/Al/Mo/Au ohmic contacts deposited on previously Cl₂/BCl₃/Ar plasma treated surface was observed. The standard deviation of contact resistance was crucially reduced due to the incorporation of Cl₂/BCl₃/Ar plasma treatment. The Cl₂:BCl₃:Ar gas mixture was used in order to thin the top of AlGaN layer prior to deposition of Ti/Al/Mo/Au ohmic contacts. The surface morphology of AlGaN was investigated using scanning electron microscopy and atomic force microscopy. TLM measurements revealed a consequential decrease of contact resistivity.

Keywords

AlGaN, GaN, ohmic metallization, recess, Ti/Al/Mo/Au.

1. Introduction

Gallium nitride and aluminium gallium nitride are the materials used for high frequency power devices including high electron mobility transistors (AlGaN/GaN HEMTs). The fabrication of advanced AlGaN/GaN HEMTs requires elaborating of low-resistance ohmic contacts to AlGaN/GaN heterostructures [1]. In spite of technological advance achieved in recent years [2] there are still some challenges regarding the improvement of ohmic contacts parameters, especially in case of Ti/Al based contacts. It is a common practice to introduce thin AlN layer to suppress Al alloy scattering in HEMTs. However, by incorporation of wide band gap material it is even more difficult to create high quality ohmic metallization. One of the available technological approaches is BCl₃-based plasma treatment [1], [2], [3], [4] due to deoxidizing of heterostructure surface. Without sputter desorption it is possible to deposit Bₓ-Clₓ which contributes to the increase of contact resistance [5]. The addition of Cl₂/Ar enhances the process of AlGaN etching due to sputtering effect. In result, the distance between the metallization and two dimensional electron gas (2DEG) is decreased which affects contact resistance.

2. Experiment

The Al₀.₂Ga₀.₈N/GaN heterostructures were deposited on 2” sapphire substrates using low pressure MOVPE process (3×2”). The heterostructures consisted of about 50 nm thick AlₓGa₁₋ₓN, AlN spacer (1.6 nm) and 2.35 µm thick unintentionally doped GaN layer. The surface was etched in H₂SO₄ (t = 3 min), then exposed to N₂O (t = 3 min) and N₂ (t = 3 min) plasma in order to get rid of contamination.

After surface pre-treatment the heterostructures were exposed to plasma in RIE system using the following conditions: P = 150 W, p = 20 mTorr (2.66 Pa), T = 7 °C, Cl₂:BCl₃:Ar (7:3:5) in parallel plate reactor. The etch rate evaluation was based on measuring etch depth using atomic force microscopy (AFM). For mentioned conditions the etch rate of Al₀.₂Ga₀.₈N was 5±1 nm·min⁻¹ [3]. By modifying processing time, the thickness of the top AlGaN layer was varied for Al₀.₂Ga₀.₈N/GaN heterostructures.

Three samples (A, B, C) were etched in such conditions in order to decrease AlGaN thickness and to strip the native oxide of the surface. For reference, sample O (unetched) was examined. The remaining thicknesses of plasma treated AlGaN layers were presented...
in Fig. 1. The C-V measurement of carrier concentration and sheet charge concentration using Hg probe gave an information about remaining thicknesses for investigated heterostructures. The heterostructures were annealed in a nitrogen ambient at 825 °C (t = 60 s) in order to improve heterostructure properties.

After the definition of an active region (mesa etching), the TLM (Transfer Length Method) [6] structures were deposited on previously etched AlGaN surface. The metallization consisted of Ti/Al/Mo/Au (230/1000/ 450/1700) [7]. After that, the heterostructures were annealed once again in a nitrogen ambient at 825 °C in order to form ohmic contacts.

3. Results and Discussion

The evaluation of etch depth was based on AFM measurements and performed C-V measurements. From C-V curve it was possible to derive carrier concentration profile (Fig. 1(a)). The width of depletion region under mercury probe was evaluated under assuming it was a parallel plate capacitor. The sheet carrier concentration (n_s) was evaluated using the integration of carrier concentration profile. From the slope of the variation of 2DEG sheet carrier concentration (Fig. 1(b)) it was also possible to evaluate thickness of AlGaN layer after etching.

Significant improvement of Ti/Al/Mo/Au contact resistance was observed for contacts deposited on previously plasma treated and pre-annealed Al_{0.2}Ga_{0.8}N/GaN heterostructures. Contact resistance (R_c), contact resistivity (\rho_c) and transfer length (L_T) were calculated using TLM method which relies on calculation of total resistance (R_T) in function of distance (L) between adjacent metallization pads (Fig. 2(a)) from I-V characteristics (Fig. 2(b)). Values of contact resistance (R_c) and corresponding standard error calculated from linear fitting of curves (Fig. 2(a)) for investigated heterostructures were presented in Tab. 1.
Tab. 1: Contact resistance (R_c) and corresponding standard error along with proportional reduction of thickness for investigated samples size.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Contact resistance R_c (Ω)</th>
<th>Standard Error (Ω)</th>
<th>Proportional reduction of $\text{Al}{0.2}\text{Ga}{0.8}\text{N}$ thickness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>135.78</td>
<td>5.70</td>
<td>0 (unetched)</td>
</tr>
<tr>
<td>A</td>
<td>62.85</td>
<td>1.53</td>
<td>8.7</td>
</tr>
<tr>
<td>B</td>
<td>49.65</td>
<td>3.32</td>
<td>19.5</td>
</tr>
<tr>
<td>C</td>
<td>29.02</td>
<td>1.43</td>
<td>32.6</td>
</tr>
</tbody>
</table>

Even though proportional reduction of AlGaN thickness was significant (32.6 %), the surface roughness of plasma treated and as-grown samples was similar ($R_a < 1.5 \text{ nm}$) as it was depicted in Fig. 3(a). Surface roughness deterioration of AlGaN caused by ion bombarding did not affect contact resistance (R_c). Similar non-affecting influence of surface roughness was observed for specific contact resistivity (ρ_c) and transfer length (L_T) (Fig. 3(b)). Surface of $\text{Al}_{0.2}\text{Ga}_{0.8}\text{N}$ prior and after etching was depicted in Fig. 4.

It was observed that even insignificant reduction of the AlGaN thickness (8.7 %) gives promising results in achieving lower contact resistivity, contact resistance as well as transfer length improvement. Thinning of AlGaN layer caused by deeper etch depths resulted in further decrease of Ti/Al/Mo/Au contact resistance.

Boron trichloride plasma surface treatment not only removes surface oxide efficiently, but it also introduces surface donor states that contribute to the improvement of ohmic resistance [3]. BCl_x radicals generated...
by cascade electron impact ionization enhance oxide layer etching by forming volatile B_xOCl_y and B_xO_y etch products which are removed from surface by accompanying ion bombardment. To increase the ion bombardment contribution, Cl_2/Ar gas mixture was added, which helped in preventing from the deposition of B_xCl_y passivation layer reported elsewhere [5]. Results presented in Fig. 3 indicate on dependency that predominant factor in the improvement of contact resistance was the reduction of AlGaN thickness. Further improvement of contact resistance can be obtained by forming Ti/Al/Mo/Au contacts at 850 °C [8].

4. Conclusion

The influence of AlGaN layer etching in Cl2:BCl3:Ar plasma on the parameters of Ti/Al/Mo/Au ohmic contacts to AlGaN/GaN heterostructure was investigated. By reducing AlGaN thickness and subsequent annealing at 825 °C in nitrogen ambient we observed the significant improvement of Ti/Al/Mo/Au ohmic contact resistance. Although etching caused gentle deterioration of surface roughness, it is believed that surface roughness did not affect contact resistance significantly. Shrinking the distance between Ti/Al/Mo/Au metallization and two.

Acknowledgment

This work was co-financed by the European Union within European Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-00-008/08-05), National Science Centre under the grant no. DEC-2012/07/D/ST7/02583, by National Centre for Research and Development through Applied Research Program grant no. 178782, program LIDER no. 027/533/L-5/13/NCBR/2014, by Wroclaw University of Technology statutory grants and Slovak-Polish International Cooperation Program no. SK-PL-2015-0028.

References

About Authors

Jacek GRYGLEWICZ received his M.Sc. degree in Electrical Engineering from Wroclaw University of Technology (WrUT), Poland in 2009 and Ph.D. degree from the Wroclaw University of Technology in 2015. Now he is assistant professor at WrUT. His research is...
focused on device processing and parameter evaluation of nitrides-based devices: HEMTs and sensors. He is co-author of 16 scientific publications.

Wojciech MACHERZYNSKI received his M.Sc. degree in Electronic from Wroclaw University of Technology, Poland in 2005 and Ph.D. degree from the Wroclaw University of Technology in 2011. Now he is assistant professor at WrUT. His research is focused on the technology of semiconductors devices in particular on development of the metal-semiconductor junction.

Andrzej STAFINIAK received M.Sc. degree (2008) and Ph.D. degree (2015) in electronics from Wroclaw University of Technology. Since then, he has been assistant professor in Division of Microelectronics and Nanotechnology, WrUT. His current research is focused on development of process technology and measurements of nanostructure based devices.

Bogdan PASZKIEWICZ received his M.Sc. degree in Electrical Engineering from St. Petersburg Electrotechnical University, St. Petersburg, Russia in 1979 and Ph.D. degree from the Wroclaw University of Technology in 1997. Now he is assistant professor at WrUT. His research is focused on the design and parameter evaluation of nitrides-based devices: HEMTs and sensors.

Regina PASZKIEWICZ received her M.Sc. degree in Electrical Engineering from St. Petersburg Electrotechnical University, St. Petersburg, Russia in 1982 and Ph.D. degree from the Wroclaw University of Technology in 1997. Now she is full professor at WrUT. Her research is focused on the technology of (Ga, Al, In)N semiconductors, microwave and optoelectronic devices technological processes development.