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Abstract. The last twenty years of computer integra-
tion significantly changed the process of service in a call
center service systems. Basic building modules of clas-
sical call centers – a switching system and a group of
humans agents – was extended with other special mod-
ules such as skills-based routing module, automatic call
distribution module, interactive voice response module
and others to minimize the customer waiting time and
wage costs. A calling customer of a modern call cen-
ter is served in the first stage by the interactive voice
response module without any human interaction. If
the customer requirements are not satisfied in the first
stage, the service continues to the second stage real-
ized by the group of human agents. The service time
of second stage – the average handle time – is divided
into a conversation time and wrap-up time. During the
conversation time, the agent answers customer ques-
tions and collects its requirements and during the wrap-
up time (administrative time) the agent completes the
task without any customer interaction. The analyti-
cal model presented in this contribution is solved under
the condition of statistical equilibrium and takes into
account the interactive voice response module service
time, the conversation time and the wrap-up time.
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1. Introduction

The proposed analytical model belongs to the category
of Markovian models which means that the flow of in-
coming calls is described by homogeneous Poisson pro-

cess and all service times are modeled by exponentially
distributed random variables. Figure 1 shows a prin-
cipal queuing model of an inbound call center with N
incoming trunk lines, interactive voice response (IVR)
module with a queue and a group of S agents (S ≤ N).
The incoming calls are described by i.i.d. exponential
random variable with average arrival rate λ and CDF

F (t) =

{
1− e−λt = 1− e−

t
tp if t ≥ 0,

0 if t < 0,
(1)

parameter tp represents the mean interarrival time.
The incoming calls are routed through N trunk lines
and the switching matrix to the IVR module, where
the service times are modeled by an i.i.d. exponential
random variables with the parameter mean service rate
θ and CDF

FI (t) =

{
1− e−θt = 1− e−

t
tI if t ≥ 0,

0 if t < 0.
(2)

Parameter tI is the mean value of service times in
IVR module. An incoming call can be rejected with
the probability of loss B in case the all N trunk lines
are busy at arrival time. After the first phase of service
in the IVR module is completed, the call may leave the
system with the probability 1 − p or it may request a
human assistance from a free agent with the probability
p. The average output rate of served calls that finish its
service in the IVR module without an agent interaction
is

λI = (1−B) (1− p)λ. (3)

The presented model supposes that these calls have
completed its service and will no longer interact with
the call center. The complementary part of calls that
decide to continue to the second phase of service has
average rate

λIA = (1−B) pλ. (4)
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Fig. 1: Call center model as a service system.

In the second phase, a call is either assigned to an
available agent or wait in the queue until an agent be-
comes free. The third phase of service – the conversa-
tion with an agent – is represented by i.i.d. exponential
random variables with mean service rate µ and CDF

FC (t) =

{
1− e−µt = 1− e−

t
tC if t ≥ 0,

0 if t < 0,
(5)

where tC is the mean conversation time of calls. Once a
customer completes its conversation with the assigned
agent, the trunk line is released and the service con-
tinues to the last phase – the after call work. In this
phase, the agent completes the tasks related to the call.
Which is as well represented by an i.i.d. exponential
random variable with mean rate α and CDF

FA (t) =

{
1− e−αt = 1− e−

t
tA if t ≥ 0,

0 if t < 0,
(6)

where parameter tA is the mean value of administrative
times. Once an agent completes the after call work, it
is available for next call waiting in queue or coming
directly from IVR module if the queue is empty. The
next section describes the analytical model of above-
described call center model.

2. Analytical Model

From the queuing theory point of view, the Markovian
model from the previous chapter can be described by
three-dimensional state space (i, j, k) with

n =
(N + 1) (N + 2) (S + 1)

2
, (7)

stationary probabilities of states P (i, j, k), where the
index i represents the number of calls in IVR module,
the index j represents the sum of the number of ac-
tive conversation with agents and the number of calls
waiting in the queue. The last index k represent the

i,j,k-1

i,j+1,k-1

i-1,j,k

i+1,j-1,k

i, j, k

i-1,j+1,ki,j-1,k+1

i+1,j,k

i,j,k+1

λ i(1-p)θ

ipθ

min(j+1,S-k+1)µ

min(j,S-k)µ

λ

(i+1)(1-p)θ

(k+1)α

(i+1)pθ

kα

Fig. 2: Possible transitions between inner state and neighbour
states.

number of agents in administrative state – finishing the
after call work. The three-dimensional state space is
limited by following inequalities

0 ≤ i ≤ N, 0 ≤ j ≤ N, 0 ≤ k ≤ S,
0 ≤ S ≤ N, i+ j ≤ N.

(8)

All possible transitions between an inner (i, j, k)
state and all neighbour states are shown in Fig. 2 and
generally described by Eq. (9) which take into account
five types of following transitions:

• (i, j, k) → (i+ 1, j, k) or (i− 1, j, k) → (i, j, k)
represents an incoming call to the call center that
found a free line and start its service in IVR mod-
ule.

• (i, j, k) → (i− 1, j + 1, k) or (i+ 1, j − 1, k) →
(i, j, k), represents a call that request an assistance
by an agent after completed service in IVR mod-
ule.
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[i (1− p) θ + ipθ + λ+ kα+min (j, S − k)µ]Pi,j,k = λPi−1,j,k + (k + 1)αPi,j,k+1

+min (j + 1, S − k + 1)µPi,j+1,k−1 + (i+ 1) (1− p) θ Pi+1,j,k + (i+ 1) pθ Pi+1,j−1,k

(9)

N∑
i=0

N−i∑
j=0

S∑
k=0

Pi,j,k = 1 (10)

λP0,0,0 = (1− p) θP1,0,0 + αP0,0,1

(α+ λ) P0,0,1 = (1− p) θP1,0,1 + µP0,1,0

(λ+ µ)P0,1,0 = pθP1,0,0 + (1− p) θP1,1,0 + αP0,1,1

(α+ λ)P0,1,1 = pθP1,0,1 + (1− p) θP1,1,1 + µP0,2,0

µP0,2,0 = pθP1,1,0 + αP0,2,1

αP0,2,1 = pθP1,1,1

(λ+ (1− p) θ + pθ)P1,0,0 = 2 (1− p) θP2,0,0 + αP1,0,1 + λP0,0,0 (11)
(α+ λ+ (1− p) θ + pθ)P1,0,1 = 2 (1− p) θP2,0,1 + λP0,0,1 + µP1,1,0

(µ+ (1− p) θ + pθ)P1,1,0 = 2pθP2,0,0 + αP1,1,1 + λP0,1,0

(α+ (1− p) θ + pθ)P1,1,1 = 2pθP2,0,1 + λP0,1,1

(2 (1− p) θ + 2pθ)P2,0,0 = αP2,0,1 + λP1,0,0

(α+ 2 (1− p) θ + 2pθ)P2,0,1 = λP1,0,1

• (i, j, k) → (i− 1, j, k) or (i+ 1, j, k) → (i, j, k),
represents a call leaving the call center after com-
pleted service in IVR module.

• (i, j, k) → (i, j − 1, k + 1) or (i, j + 1, k − 1) →
(i, j, k), represents the transition of an agent
from the conversation phase to the administrative
phase.

• (i, j, k) → (i, j, k − 1) or (i, j, k + 1) → (i, j, k),
represents the completion of administrative phase
and leaving the system.

The Eq. (9) and state space limits in Eq. (8) form
a set of n linear equations where each one represents
the equality of rate of transitions out of a given state
(i, j, k) and the rate of transitions into that state, in
steady state [3], [4] or [5]. In case of boundary states,
it is important to omit terms that correspond to tran-
sitions that do not exist. The set of above mentioned
linear equations should be normalized with condition
described in Eq. (10).

An example of three-dimensional state space with
all possible transitions for small model with two trunk
lines and one agent (N = 2, S = 1) is shown in the
Fig. 3.
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Fig. 3: Example of state space for the system N = 2 and S = 1.

The concrete set of equations for this small system
is derived in Eq. (11). All twelve states belongs in this
case to the boundary states.

Index k corresponds to a layer of the three-
dimensional model and indexes i, j are the same in
each layer. Figure 3 has two layers, zero layer is illus-
trated by the solid line and layer one use dotted line.
If the transition rate α is going to infinity the three-
dimensional model converges to the two-dimensional
model presented in [1] or [2].

Numerical solution for larger values of N and S can
be challenging. For the system with N = 100 trunk
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lines and S = 70 agents the state space has n = 365 721
states. The number of elements in a matrix that rep-
resent the set of linear Eq. (9) is 365 7212 = 1.3 · 1011
and required memory to save them in double precision
format is approximately 1 TB. Fortunately, the matrix
belongs to the category of band-diagonal sparse matri-
ces (each row has only six nonzero elements) [6]. The
sparsity is 0.00016 in this case. Therefore, the solution
of probability state space leads to the application of
methods that uses sparse arrays and is solvable in an
acceptable time.

3. System Parameters

The probability of blocking or loss B of an incoming
call is given by sum of boundary probabilities of states
P (i, j, k) that doesn’t have the transition to neighbour
state (i, j, k)

B =

N∑
i=0

S∑
k=0

Pi,N−i,k. (12)

The probability of zero waiting time of an incoming
call after its service in IVR module is

P (WIA = 0) =

N∑
i=1

N−i∑
j=0

S−1−j∑
k=0

iPi,j,k

N∑
i=1

N−i∑
j=0

S∑
k=0

iPi,j,k

. (13)

The mean number of calls in IVR module E [XI ] is

E [XI ] =

N∑
i=1

N−i∑
j=0

S∑
k=0

iPi,j,k. (14)

For the system in state (i, j, k) is the number of wait-
ing calls max (0, j + k − S) and the mean number of
calls in the queue is then

E [XQ] =

N∑
i=1

N−i∑
j=0

S∑
k=0

max (0, j + k − S)Pi,j,k. (15)

Similarly the mean number of active conversations
with agents is

E [XC ] =
N∑
i=1

N−i∑
j=0

S∑
k=0

[j −max(0, j + k − S)]Pi,j,k, (16)

and the mean number of agents in administrative phase
is given by equation

E [XA] =

N∑
i=0

N−i∑
j=0

S∑
k=1

kPi,j,k. (17)

The mean number of calls E [XT ] in call center is
equal to the sum of mean values of calls in IVR module
E [XI ], calls in queue E [XQ] and active conversations
with agents E [XC ]

E [XT ] = E [XI ] + E [XQ] + E [XC ] . (18)

The definition of mean waiting time is significantly
influenced by the location of measurement. It is impor-
tant to know, to what portion of calls the mean waiting
time is related. The mean waiting time E [W0] related
to all offered calls is according to Little’s law equal to

E [W0] =
E [XQ]

λ
, (19)

similarly the mean waiting time E [W ] related to all
calls served by the call center is equal to

E [W ] =
E [XQ]

λ (1−B)
, (20)

and mean waiting time E [WIA] related to all calls re-
quested service by an agent (calls that decide to con-
tinue to the second phase of service) is equal to

E [WIA] =
E [XQ]

λIA
=

E [XQ]

λ (1−B) p
. (21)

Finally the men waiting time E [WW ] related to all
call that really wait in queue

E [WW ] =
E [XQ]

λ (1−B) p (1− P (WIA = 0))
. (22)

The next chapter presents some numerical and sim-
ulation results.

4. Numerical Results

To verify the correctness of presented model a simula-
tion program in C++ has been written. In Tab. 1 is a
short summary of results for call center with N = 100
trunk lines and S = 70 agents. Simulation time of
one hundred intervals with length 500 hours takes 46
seconds on Intel CPU i7-3520M 2.9 GHz.
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Tab. 1: Results comparison of analytical and simulation model.

N = 100, S = 70, λ = 0.1818 s−1

tI = 100 s, tC = 360 s, tA = 180 s, p = 0.7

Parameter Model Simulation

B 0.01074 0.01062 ± 1.99%

E [W0] 58.9930 s 58.9031 s ± 0.94%

P (W0 > 120 s) 0.22567 ± 1.19%

P (W0 = 0) 0.50451 0.50468 ± 0.44%

P (W0 > 0) 0.49549 0.49532 ± 0.45%

E [W ] 59.6336 s 59.5378 s ± 0.96%

P (W > 120 s) 0.22810 ± 1.20%

P (W = 0) 0.49913 0.49936 ± 0.47%

P (W > 0) 0.50087 0.50064 ± 0.47%

E [WIA] 85.1908 s 85.0584 s ± 0.94%

P (WIA > 120 s) 0.32588 ± 1.19%

P (WIA = 0) 0.284471 0.28475 ± 1.13%

P (WIA > 0) 0.71553 0.71525 ± 0.45%

E [WW ] 119.060 s 118.999 s ± 0.57%

All simulation results correspond to the results of
presented analytical solution. The confidence level
95% was used for all simulation outputs.

5. Influence of Wrap-Up Time

There are many models that do not respect the last
phase of service – the after call work. To this category
also belongs the two-dimensional model published in
[2] or simpler and fundamental Erlang queuing model
M/M/S/N . All these models often use a simple correc-
tion of wrap-up time absence, they only add the mean
wrap-up time to the mean conversation time. The fol-
lowing analysis tries to quantify the impact of such
simple correction on key parameters of the proposed
model that exactly respect important phases of service.

Following parameters are constant: number of trunk
lines N = 40, number of agents S = 23, probability
of assistance of an agent p = 0.7, input intensity λ =
0.1 s−1, mean service time in IVR module tI = 120 s
and mean occupation time of an agent tC+ tA = 300 s.

All graphs in this chapter use on x-axis the tA/tC
ratio. A simple addition of the wrap-up time to conver-
sation time would increase the average load of agents.
To minimize this negative effect the following analy-
sis has been done with constant mean agent occupa-
tion time tA + tC . This means that for tA/tC = 1
is tA = tC = 150 s and for tA/tC = 2 is mean con-
versation time tC = 100 s and mean wrap-up time
tA = 200 s.
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)
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0.03

0.04

0.05

B = f (tA/tC)

Fig. 4: Influence B = f (tA/tC), for system with parameters
N = 40, S = 23, p = 0.7, λ = 0.1 s−1, tI = 120 s,
tC + tA = 300 s.

Figure 4 shows the influence of increasing tA/tC ratio
on blocking probability B of the call center. The block-
ing probability falls down because the line utilization
in the conversation phase falls down. A part of trunk
lines unused by agents in conversation phase is used for
holding calls in queue or accepting new incoming calls.
The starting value B = 0.05 for tA/tC = 0 corresponds
with results of the two-dimensional model mentioned
in [1] or [2]. The blocking probability B is below one
percent if the ratio tA/tC = 1.
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[X
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0
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E[X ] = f (tA/tC)

E[XI ]

E[XQ]

E[XC]

E[XA]

Fig. 5: Influence E [X] = f (tA/tC), for system with parameters
N = 40, S = 23, p = 0.7, λ = 0.1 s−1, tI = 120 s,
tC + tA = 300 s.

The same effect is observable in the Fig. 5 where the
mean number of calls in queue and also in IVR module
has a little increasing trend. There is also shown signif-
icantly increasing trend of mean number of calls E [XA]
in administrative phase and adequately decreasing the
mean number of calls E [XC ] in conversation phase.
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Figure 6 displays the values of probability of waiting

P (W > 0) = pP (WIA > 0) =
P (W0 > 0)

1−B
. (23)
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Fig. 6: Influence P (W > 0) = f (tA/tC), for system with pa-
rameters N = 40, S = 23, p = 0.7, λ = 0.1 s−1,
tI = 120 s, tC + tA = 300 s.
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Fig. 7: Influence E [W ] = f (tA/tC), for system with parame-
ters N = 40, S = 23, p = 0.7, λ = 0.1 s−1, tI = 120 s,
tC + tA = 300 s.

Again is shown a significantly increasing trend for
very small values of tA/tC ratio. The next important
parameter from the customer’s point of view is mean
waiting time E [W ], see Fig. 7.

The ratio tA/tC of typical call centers is in the range
from 0 to 1, where is shown the greatest increase in
mean waiting time. The starting values for tA/tC = 0
and limiting values for tA/tC →∞ are in Tab. 2.

Tab. 2: Comparison of limiting values of mean waiting times
E [W0], E [W ], E [WIA], E [WW ].

N = 40, S = 23, λ = 0.1 s−1, tI = 120 s, p = 0.7

Param. tC = 300 s, tA = 0 s tC = 0 s, tA = 300 s

E [W0] 9.9 s 44.6 s

E [W ] 10.4 s 44.8 s

E [WIA] 14.9 s 66.8 s

E [WW ] 46 s 119.5 s

6. Conclusion

In this paper is presented analytical solution of call
center queuing model under statistical equilibrium that
explicitly describe the service in IVR module and af-
ter call work of agents. The numerical results of the
presented analytical model exactly correspond to val-
ues obtained from simulation program that author de-
veloped in C++ language for this type of system.
The analysis in the section five shows significant neg-
ative influence of small values of wrap-up time on the
mean waiting time and on the probability of waiting
P (W > 0), even if the mean occupation time of an
agent is constant tC + tA = 300 s.
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