POWER ENGINEERING AND ELECTRICAL ENGINEERING

VOLUME: 13 | NUMBER: 3 | 2015 | SEPTEMBER

ADVANCED MODEL OF ELECTROMAGNETIC LAUNCHER

Karel LEUBNER, Radim LAGA, Ivo DOLEZEL

Department of Electrical Power Engineering, Faculty of Electrical Engineering, Czech Technical University,
Technicka 2, 166 27 Prague, Czech Republic

leubner@fel.cvut.cz, lagaradi@fel.cvut.cz, dolezel@fel.cvut.cz

DOI: 10.15598/aeee.v13i3.1419

Abstract. An advanced 2D model of electromagnetic
launcher is presented respecting the influence of eddy
currents induced in the accelerated ferromagnetic body.
The time evolution of electromagnetic field in the sys-
tem, corresponding forces acting on the projectile and
time evolutions of its velocity and current in the field
circuit are solved numerically using own application
Agros2d. The results are then processed and evaluated
in Wolfram Mathematica. The methodology is illus-
trated with an example whose results are discussed.
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1. Introduction

Devices working on the principle of electromagnetic
launching have been known more than 150 years. We
can mention, for example, electromagnetic actuators of
various constructions, parts of switching gears, electro-
magnetic guns, and many others.

But despite their relatively simple construction, their
design and modeling is not an easy business because of
the presence of nonlinear structural elements; some of
them, moreover, move. Even when the physics of the
system is known, the problem has not been solved com-
pletely so far because of strongly nonlinear interactions
of involved magnetic field and two circuits (electric cir-
cuit and mechanical circuit).

For example, the first attempts to design and build
a magnetic coil gun were only based on more or less
sophisticated experiments, which is the way able to
provide a functioning device, but mostly with poor op-
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eration parameters. This part of a rather old history
is well summarized and documented in [IJ.

A more extensive development in modeling such de-
vices began in eighties of the last century, which was
possible due to achievements in hardware and software
capabilities. But still, there appeared serious problems
with the numerical solution due to strong nonlinearities
involved in the task. Therefore, the first models were
solved in the weakly coupled formulations, i.e., the par-
ticular equations describing the system were calculated
separately. This approach could be considered only ori-
entative and the results often exhibited unacceptable
errors compared with experiments.

More reliable methodologies and also the first at-
tempts to optimize selected structural parts started
appearing in nineties of the last century and at the
beginning of this century. Worth mentioning are sev-
eral works solving the problem in the quasi-coupled for-
mulation, which means that the mathematical model
was solved iteratively as a whole, but specific nonlin-
earities were only respected in selected time steps (in
the remaining time steps the system was considered
linear). Information about these more advanced ap-
proaches can be found in [2], [3], [, [5], [6], [7], [8] and
others.

The presented paper represents an attempt to solve
the problem respecting all nonlinearities in the system
together with the influence of eddy currents due to both
transformation and motion.

Formulation of Technical
Problem

2.

Consider the arrangement in Fig. [I The system con-
sists of a field coil carrying current of an appropriate
time evolution, a ceramic or plastic leading barrel and
a ferromagnetic body (projectile) that is to be acceler-
ated. Geometry and physical properties of the above
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Fig. 1: Basic arrangement of electromagnetic launcher.

parts are supposed to be known, as well as the param-
eters of the feeding electric circuit.

The time variable magnetic field generated by the
field coil produces magnetic force acting on the pro-
jectile that starts moving in the direction indicated by
the arrow. The field coil must be switched off at the
moment when the projectile is approximately in the
middle of the coil. Then it continues moving just by
its own inertia.

The aim of this work is to model the movement of
the projectile (particularly its acceleration and veloc-
ity) with the help of computational software Agros2D
[9], [10] and Mathematica 7 [IT].

3. Mathematical Model

The basic mathematical model of electromagnetic
launcher consists of a nonlinear partial differential
equation describing the magnetic field in the system
(taking into account the eddy currents due to the ve-
locity of motion) and two highly nonlinear ordinary
differential equations for the time evolution of the field
current and velocity of motion of the projectile. The
corresponding equations are presented and in the fol-
lowing text.

The electric circuit (see Fig. [2) obeys the equation

odo 1t
Ri+ a(Lz) + 6/0 idT = Uy, (1)

T

aa— Uco

Fig. 2: Feeding circuit.
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with the initial conditions

Here, R denotes the overall resistance of the circuit,
L is the inductance of the field coil that is a nonlinear
function of the position s of the projectile, its instan-
taneous velocity ¢, and instantaneous value i of the
field current, C stands for the capacitance of the bat-
tery, and Ugg represents its initial voltage. Finally,
Lo = L (Sstart, ¥ = 0,7 = 0) is the initial inductance of
the system, Sgiapt denoting the starting position of the
projectile.

The time evolutions of velocity and trajectory of the
projectile are governed by the equations

v=—= §(0) - t§'sta1rta

where m is the mass of the projectile, ¥'is its velocity in,
ﬁem is the electromagnetic force acting on it and ﬁdr
denotes the sum of the drag forces (that are given by
friction in the leading barrel and aerodynamic force).
The quantity ﬁem, analogously to the inductance L,
is also a nonlinear function of the instantaneous posi-
tion § of the projectile, its velocity ¥ and instantaneous
V_z}lue i of the field current. Both the above quantities,

F.,, and L have to be calculated from the current dis-
tribution of magnetic field in the system.

The distribution of magnetic field may be described
using several formulations based on various potentials.
In our case, the magnetic vector potential A is used
as the principal quantity. The full equation for this
quantity may be written in the form [12]

—

curl (/flcurlff) + (%;1 —Tx curlA) = Jeat, (3)

where p denotes the magnetic permeability, v is the
electrical conductivity, and jem is the field current den-
sity in the field coil. The boundary condition along a
sufficiently distant boundary is of the Dirichlet type.

—

— — U x curld

ot

tal eddy current densities induced in the system. The

The term —vy represents the to-

0A . .
first term —y—— is eddy current densities due to trans-

ot
formation, the second term ~¥ X curld is eddy cur-
rent densities due to the movement. Their effects act
against the magnetic field and lead to a slight deceler-
ation of the projectile.

The magnetic force ﬁem acting on the projectile is
determined using the magnetic Maxwell stress tensor
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Tem. The vector of the force is in our case given by

the integral [I3]
B N
e [ s,
D

where the integration is performed over the whole
boundary of the projectile. The magnetic Maxwell
stress tensor itself is given by the relation

(4)

Lo 14 4
m:H®B—§(H-B)I, (5)
where H and B are the vectors of magnetic field
strength and magnetic flux density, respectively (B =
curl4, B = pH), I stands for the unit matrix and sym-
bol ® represents the dyadic product.

The inductance L occurring in Eq. can be calcu-
lated from the expression

(6)

where W, is the energy of magnetic field of the system
that may be calculated using the formula

1 (- -
szi/J-AdV, )

\4

where V is the volume of the definition area.

As the arrangement may practically be considered
axi-symmetric, both quantities A and fezt have only
one nonzero component in the tangential direction,
while the trajectory §, velocity ¢ and both forces Fom
and Fy,. have only one nonzero component in the z-
direction (see Fig. [I)).

4. Numerical Solution

The task was solved numerically by means of our own
application Agros2D and commercial software Mathe-
matica 7. The code Agros2D (that is completely free)
is based on a fully adaptive higher-order finite element
method that is intended for numerical solution of 2D
nonlinear and nonstationary multiphysics problems de-
scribed by a set of partial differential equations. It is
characterized by a number of quite unique features such
as finite elements up to the 10th order, efficient multi-
mesh technology, hanging nodes of any level, combina-
tion of various elements including curvilinear elements
(for approximation of curvilinear boundaries and in-
terfaces) etc. The evaluation of the results and some
auxiliary computations were carried out in Mathemat-
ica 7 using a lot of own procedures and scripts. The
whole algorithm consists of the following steps.
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4.1. Inductances and Magnetic

Forces

Computation of the dependencies of the inductance L
and z-component of the force Fe,, , on the field current
1 and position x for particular velocities ¢. In this way
we will obtain two sets of nomograms (for particular
velocity) from which we can easily find the values of
both above quantities for values i, x and v,, (and, where
necessary, also their derivatives). The final values of L
and F,,, . are for any current, position of the projectile
and its velocity calculated using linear interpolation in
the above nomograms.

4.2.  Circuit Equations

Equation and Eq. are solved simultaneously but
successively, in time steps.

e Solution of Eq. (1. First it is necessary to modify
the term d(Lz)/dt.

d. . di  dL i dLdz
gB=Llgtig=Ltgtiza= ©®
Ldl—f— _dL
T at dx

For further processing, we determine the second
derivative of term Li with respect to time:

d? d% didLdz didLdz
(Li) = + — e
dr2 dt2 " dtdz dt | dt dz dt
‘H%@ +i1_)’(127L— d722 %dL+ (9)
dz dt? dzdt ~ T dt2 dt dz
ATl | dE
dr dz  Vdzdt”

After another differentiating Eq with respect
to time ¢ and substituting for d? (LZ)/dt2 we obtain

dt2

_didL . dvdL .1
+20——+i——+i~ =0.

R* dtdr  dzdz  C

(10)
Introducing the differences instead of the deriva-
tives and substitution g = di/dt leads to a system
of difference equations in the form:

RAt, 2U, (dL
=g (1- 2R Z2) ) —he, (11
Jk+1 gk( Lr Lr (dx)k) ks ( )

1 dv, dL 1
hp = — [ [ =2 — ) —ip—= | At 12
g Ly (Zk(dt)k<dm>k ZkC) " ( )
and

Tht1 = gt + ig, (13)
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with the initial conditions

. Uco
0 = 07 go = —/,

£ (14)

Here, a denotes the acceleration, k is the number
of step and Aty stands for the k-th time step.

e Solution to Eq. . No modification of this equa-
tion is necessary.

e The values L, — and Fgy,, can easily be de-

termined from thex above nomograms using an ap-
propriate interpolation or extrapolation technique.
On the other hand, the nomograms must be ap-
propriately dense.

4.3. Numerical Problems Connected

with Solution

The principal complication in the numerical solution
is computation of the nomograms for higher values of
the field current. High field currents bring about either
partial or complete oversaturation of the ferromagnetic
projectile. But this oversaturation may be evaluated
only approximately, because the magnetization curve
of material in the relevant domain can only be esti-
mated. This leads to non-estimable errors of results,
and, moreover, the related iterative processes are often
accompanied by various undesirable phenomena such
as oscillations, and generally, a very poor convergence
rate, which means a long time of computations.

5. Illustrative Example

The mathematical model was tested on a portable
three-stage electromagnetic accelerator depicted in
Fig. [3] that was completely developed and built by
the second author. Both the model and measurements
were realized just on the first stage of the device.

The principal aim of the task was to compare the
measured and calculated velocity and trajectory of the
projectile.

5.1. Input Data

The principal dimensions of the coil of the first stage,
leading barrel and projectile are shown in Fig. [4l Their
values are: Dy = 36 mm, d; = 8 mm, [; = 50 mm,
Dy = 6.75 mm, Lo = 52 mm and initial position of the
end of the projectile zgtary = —38 mm.

The voltage Ugg of the capacitor battery is 350 V.
The parameters of the electric circuit were measured
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for frequency 156 Hz, because the shape of the corre-
sponding current corresponds to the shape of real cur-
rent in the series RLC electric circuit. For the above
frequency, the capacitance C' = 7.11 mF, the total re-
sistance of the circuit R = 0.145 Q and inductance
of the coil L = 0.220 mH. The coil contains 203 turns
wound in 7 layers, each having 29 turns. The conductor
is of circular cross section and its diameter is 1.6 mm.
The leading barrel is made of brass with a longitudinal
gap, so that it has no effect on electromagnetic quan-
tities.

The projectile is made of material Vacoflux 48 (pro-
duced by German company Vacuumschmelze GmbH &
Co). After manufacturing, the surface of the projectile
was hardened, but the conditions of hardening are not
known. That is why we used the curve u, = u,-(B) of
its primary magnetization that is depicted in Fig.
Electric conductivity of this material is approximately
2.5 MS-m~! and its mass density is 8120 kg-m 3.

5.2.  Results

For the accuracy of results the decisive role is played
by the correctness of the time evolution of current 4
in the field coil. This current was measured and also
modelled using Eq. . The results are presented in
Fig. [6]

The blue line (measured) shows the measured cur-
rent that was switched off at the moment when the
projectile reached the middle of the coil. The black
line (calculated 1) shows the evolution for circuit pa-
rameters given in subsection (here, however, the
current was not switched off). And just for compar-
ison, the red line (calculated 2) shows another calcu-
lated evolution for circuit parameters determined by
their measurement at the industrial frequency, i.e., not
quite correctly. Obviously, the accordance of the blue
and black lines is extremely good.

Important are the nomograms of the inductance L,
its derivative with respect to coordinate x, and mag-

excitation of switching thyristors

- - control unit
accelerating coils
) control panel
velocity
measurement

converter
12V -> 350V

Pb accumulator

switching thyristors

capacitors

Fig. 3: A three-stage electromagnetic accelerator.
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Xstart L[

Fig. 4: Principal dimensions of the first-stage coil and projec-
tile.

netic force Fen, , that are functions of the field current
i, and position x and velocity ¢ of the projectile. Fig-
ure [7] contains the corresponding nomogram of L for
velocity ¥ = 0 m-s!.

In fact, the figure contains two nomograms. The
transparent one shows the case when the relative per-
meability of the projectile corresponds to Fig. [5] but
ends at the value y, = 4.6 for B = 1.5 T (for lower val-
ues of u,. there appeared severe problems with the con-
vergence). The real nomogram, however, is the lower
one. For its construction, a special restricting func-
tion had to be proposed, being able to simulate even
lower values of the relative permeability. In case of
higher values of the field current i, the projectile be-
comes strongly oversaturated and its relative perme-
ability drops to 1.

The analogous nomograms for the derivative of in-
ductance L and magnetic force Fi,, ., are depicted in

Fig. 8 and Fig. [0

The nomogram containing the derivative dL/dx is
not as smooth as it should be. The visible oscillations
are caused by numerical errors due to problems with
the convergence of the iterative processes in the do-
main of a high saturation of the projectile. A better
level of smoothness could be achieved by using interpo-

M (‘)
35000 ™~

30000 -

25000 t-

20000 -

15000

10000 +-

5000 -

0 '
0.0 0.5 1.0 1.5

Fig. 5: Magnetization curve of material Vacoflux 48.
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Fig. 6: Time evolution of current in the field coil.
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Fig. 7: Inductance of the coil.

Velocity: 0 m/s
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220
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Fig. 8: Derivative of the real inductance with respect to x.

lation polynomials of higher orders, but at a cost of a
substantially longer time of computation. On the other
hand, many tests proved that these oscillations do not
affect the resultant evolution of the field current too
significantly.

The time evolution of motion of the projectile was
calculated using Eq. , where the drag force is rep-
resented by the aerodynamic resistance. Its value is
given by the formula

1 2
Firz = §CpSv , (15)
where p is the density of air, S is the area of the

cross section of the projectile and C' is a constant that
depends on the shape of the projectile. In our case
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Fig. 9: Force acting on the projectile in the direction of z:
transparent nomogram - constant permeability of the
projectile, low (blue) nomogram - real permeability.

C = 0.4, but some variations of this coefficient proved
to have only a small influence on the time evolution of
velocity.

Figure [I0] depicts the time evolution of the posi-
tion of the rear face of the projectile and Fig.
shows the time evolution of its velocity. The time step
At = 1076 5. The red lines are the dependences with-
out respecting eddy currents in the projectile, the blue
ones represent them. The differences are, however, very

Fig. 10: Time dependence of trajectory of the projectile.

30
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25
20
15
10 /- Muzzle vel.: 29.92 m/s -

Muzzle vel.: 29.56 m/s
Time (ms)

0.5 1.0 1.5 2.0

Fig. 11: Time dependence of velocity of the projectile.

5
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small. The eddy currents decelerate the velocity of the
motion, but only very slightly.

The average muzzle velocity measured on the device
was 28.9 m-s~!. The difference from the calculated
values is about 1 m-s~! (over 3 %), which can be con-
sidered quite excellent.

6. Conclusion

The paper is aimed at numerical modeling of operation
characteristics and parameters of an electromagnetic
accelerator.

The proposed mathematical model consisting of one
partial and two ordinary strongly nonlinear differential
equations was solved numerically in the quasi-coupled
formulation, with pre-calculated nomograms of the in-
ductance of the system, its derivative and magnetic
force acting on the projectile. The computations had
to be carried out extremely carefully because of poor
convergence due to oversaturation of projectile at high
values of the field current.

The model proved to provide realistic results whose
agreement with the measured data is excellent. Next
work will be focused on modeling all three stages of the
electromagnetic gun.
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