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Abstract. The paper compares two different ways (2D
and 3D) of modelling of two-phase squirrel-cage induc-
tion machine using the finite element method (FEM).
It focuses mainly on differences between starting char-
acteristics given from both types of the model. It also
discusses influence of skew rotor slots on harmonic
content in air gap flux density and summarizes some
issues of both approaches.
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1. Introduction

Three-phase induction machines are supplied by three-
phase symmetrical voltage. Windings of the motors
are arranged within the stator and mutually shifted by
120 electrical degrees. The machines operate with cir-
cular magnetic fields. Single-phase motors have two
windings (phases) inside their stators mutually shifted
by 90 electrical degrees and have usually aluminum
squirrel-cage. One of the stator winding works as main
phase and the second one is used as auxiliary phase.
Both phases are supplied from a single-phase power
source. Time shift of the current flowing through the
auxiliary winding is usually achieved by in series con-
nected capacitor. This construction generates an ellip-
tic magnetic field producing torque including forward
and backward components [1], [2], [3].

If both main and auxiliary windings are identical and
supplied by symmetrical two-phase voltage, produced
is circular magnetic field with balanced torque (as given
by three-phase induction machine)[4], [5], [6], [7], [8].
This type of machine is used for analysis (comparison)

because it has longer end-windings as compared with
three-phase induction machine.

The main issues of 2D and 3D modelling of induction
machine have been already discussed at global scale
in common literature but comparison between specific
results from those models is still lacking [9], [10] [11],
[12]. The usual problem is to estimate the influence
of overhang part of the winding or edge effect on the
resulting magnetic field. In this article a small (and
“short”) motor is discussed. In literature only motors
of higher power are analysed and discussed.

The main issue of this paper is to investigate the
influence of skewed rotor slots and ends of windings
on results and validate the 2D model of this type of
induction machine even in case of non-axial symmet-
ric rotor. Full-scale FE models (2D/3D) used for this
purpose take into consideration all necessary features:
the geometry, non-linearity of magnetic material and
transient supply with moving rotor. The studied ma-
chine is an ordinary industrial single-phase induction
machine redesigned for two-phase supply with Q1 = 24
slots on the stator. It has aluminum squirrel cage with
Q2 = 30 round trapezoidal rotor bars. The machine
may be classified as “short” with relatively high ratio
between rotor diameter Dr and the machine’s length
lFE . Nominal parameters and main geometrical di-
mensions are shown in Tab. 1.

Tab. 1: Main parameters of analyzed two-phase induction ma-
chine.

Parameter Value Unit
Rated power Pr 50 W
Rated voltage (two-phase) Ur 115 V
Rated speed nr 2400 r/min
Number of slots Q1/Q2 24/30 -
Rotor diameter Dr 55.4 · 10−3 m
Rotor length lFE 22.3 · 10−3 m
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2. FE Model of Studied Motor

Both 2D and 3D models (Fig. 2 and Fig. 3) calculate
the start-up characteristic with no external load set on
the shaft. The load strongly alters the back magneto-
motive force (mmf) of the rotor and consequently the
air gap magnetic field. Its harmonic content may be
used as a measure of influence of skewed rotor bars.
The power supply is considered as two-phase symmet-
rical voltage including no time harmonics.

Fig. 1: 3D model of studied machine.

As seen, the advantage of half-symmetry is used to
make the computation time as short as possible. The
stator coils are simplified to one single piece of copper
wire with hypothetical number of turns. It brings sig-
nificant reduction of the model (density of computation
mesh). While the 3D solution works with 119724 mesh
elements the 2D model is meshed only with 7912 ele-
ments (provides practically the same results as given
from the same model with 90000 elements). Unlike
the 2D model, the 3D model considers real overhang
part of windings together with real skewed rotor bars
in calculation. In 2D model the ends of winding and
skewed slots were considered as added leakage induc-
tances computed in RMxprt. RMxprt (Rotational Ma-
chine Expert) works with an analytical method of de-
signing electric machines.

According to the electrical motor design tradition
[14], leakage inductance can by divided into following
leakage inductances:

Lσ = Lδ + Lu + Ld + Lw + Lsq, (1)

where Lσ - air gap leakage inductance, Lu - slot leakage
inductance, Ld - tooth tip leakage inductance, Lw - end
winding inductance, Lsq - skew leakage inductance.

The investigated flux density in time t = 0.03 s is
shown in Fig. 2 and Fig. 3.

Fig. 2: 2D model of studied machine – flux density distribution.

(a)

(b)

Fig. 3: (a) B-vectors and (b) nodal form of magnetic field.

As obvious from Fig. 2 and Fig. 3 both models give
relatively same results (from saturation point of view),
but the most significant difference lies in the possibil-
ity to consider the overhang part of winding and skew
rotor slots affecting torque ripple and input current.
Calculated current characteristics for individual phases
together with torque and speed characteristics are il-
lustrated in Fig. 4, Fig. 5 and Fig. 6.
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(a)

(b)

Fig. 4: Comparison of starting current characteristics.

The current given from 3D model is compared with
2D (Fig. 4) model slightly reduced by skewed (1.5 of
slot pitch) rotor slots and partial inaccuracy of set leak-
age winding parameters.

The influence of this feature can be also seen in
Fig. 5 comparing starting no-load torque characteristic
for 3D, 2D and 2D model without added leakage in-
ductance. The common way of 2D simulation does not
take into consideration the stator end-windings.

The start-up procedure was simulated as a direct
connection to the power grid. Oscillations in the re-
sulting torque waveforms are caused by slots’ openings,
partial winding unbalance of placing and some numer-
ical matters.

Differences between the 2D and 3D models are
clearly seen in the torque-slip characteristics (see
Fig. 6). The red curve (3D) obviously lies much closer
to the measurement. It is because the machine is rela-
tively “short” and the edge effects are (not considered
in 2D) not negligible.

Fig. 5: Comparison of transient torque characteristics.

Fig. 6: Steady-state (torque-slip) torque characteristics.

3. Air Gap Flux Density

The sleek start of an induction machine is consider-
ably affected by an air gap magnetic field containing
space harmonics. These are caused by slot leakage sat-
uration, together with slot openings and winding con-
struction, and produce parasitic components in steady
state torque characteristic [13], [15], [16], [17].

Using 2D and 3D finite element analysis (FEA), the
air gap field distribution may be easily calculated and
properly compared to evaluate the influence of skewed
rotor bars.

The air gap magnetic field calculated for two differ-
ent loaded states are shown in Fig. 7 and Fig. 8. While
the first speed of 2700 r/min relates to slip 0.1 and av-
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erage torque T = 0.13 N·m, the second one, 1500 r/min
refers to slip 0.5 of average torque T = 0.4 N·m. The
comparison between them is seen in Fig. 9 and Fig. 10.
In 3D analysis the air gap flux density is calculated
on circle path in the middle of the motor’s length. As
seen in Fig. 7 and Fig. 8 the skew slots slightly lower
distortion of the fundamental wave by space harmonic
components.

Fig. 7: The air gap flux density n = 2700 r/min.

Fig. 8: Air gap flux density n = 1500 r/min.

The resulting amplitude spectrums from Fig. 9 and
Fig. 10 (given from 3D and 2D model) are shown in
Fig. 11, Fig. 12, Fig. 13 and Fig. 14. Amplitudes of
harmonic components of all presented spectrums are
referred to the amplitude of its fundamental wave.

The most significant 23th and 25th components
(Fig. 11 and Fig. 12) and their linear multiples ν1 are
caused by stator slots according to Eq. (2).

ν1 = c
Q1

p
± 1 = c

24

1
± 1 for c = 1, 2, 3, . . . . (2)

The rising machine’s load (higher slip) generates
stronger back mmf of the rotor, increasing values of

Fig. 9: The air gap flux density 2D calculation (comparison).

Fig. 10: The air gap flux density 3D (comparison).

the 29th and 31st harmonic components (Fig. 13 and
Fig. 14) and their linear multiples ν2. Those are gen-
erally caused by rotor slots according to Eq. (3).

ν2 = c
Q2

p
± 1 = c

30

1
± 1. (3)

While the stator winding is placed in only one layer,
no chording is possible. This makes the winding worse
distributed, and produces amounts of unsuppressed
harmonic component of orders νs Eq. (4).

νs = 2mc± 1. (4)

The 3rd, 5th, 7th and 9th orders from Eq. (4) in
Fig. 13 and Fig. 14 therefore take place mainly in
case of higher machine’s load producing stronger stator
mmf.

According to Fig. 10 and Fig. 11 there is almost no
difference in low torque air gap flux density resulting
from 2D/3D models. More significant differences may
be found only in widely loaded operating states, where
the higher stator current act more distinctly.
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Fig. 11: The amplitude frequency spectrum of the blue curve
(3D n = 2700 r/min) depicted in Fig. 7.

Fig. 12: The amplitude frequency spectrum of the red curve
(2D n = 2700 r/min) depicted in Fig. 7.

Fig. 13: The amplitude frequency spectrum of the blue curve
(3D n = 1500 rpm) depicted in Fig. 8.

The comparison between the most significant har-
monic components is listed in Tab. 2.

Fig. 14: The amplitude frequency spectrum of the red curve
(2D n = 1500 rpm) depicted in Fig. 8.

Tab. 2: Amplitudes of most significant harmonics.

Harmonic
Order

n=2700 [r/min] n=1500 [r/min]
B [p.u.] B [p.u.]

2D 3D 2D 3D
3rd 0.027 0.026 0.116 0.122
5th 0.041 0.037 0.123 0.111
7th 0.018 0.013 0.052 0.071
9th 0.014 0.022 0.052 0.063
11th 0.015 0.021 0.045 0.052
23rd 0.252 0.255 0.335 0.313
25th 0.181 0.182 0.226 0.224
29th 0.035 0.033 0.147 0.151
31st 0.034 0.033 0.148 0.143

The results indicate relatively good agreement be-
tween the two models. The only considerable differ-
ence can be seen at higher load in stator slots harmonic
components which are lower due to skewed rotor bars.

4. Experimental Measurement

All theoretical statements are supported by labora-
tory measurement of the discussed two-phase squirrel-
cage induction machine. The testing laboratory stand
scheme can be seen in Fig. 15.

The machine is supplied from a symmetrical two-
phase power source. Currents (Fig. 16) and voltages
are measured with current probes. The torque devel-
oped during the test is measured with torsional torque
sensor (Staiger Mohilo typ: IT10/1Nm).

Measured current waveforms are shown in Fig. 16
and the corresponding calculated current waveforms
are illustrated in Fig. 17. The supply source used in
the experiment was relatively soft and this is the rea-
son why the amplitude of the measured and calculated
currents during start-up is slightly lower than the sim-
ulated waveforms (Fig. 4).
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Fig. 15: The assessment of testing stand.

Fig. 16: The measured current.

Fig. 17: The simulated current.

5. Conclusion

From the comparison of currents, torques and air gap
flux density distribution it is clear that the differences
between results of 2D and 3D models are relatively
small but must be considered. In case of preliminary
and glance calculation the 2D model gives satisfying
results. It is therefore acceptable to simulate the low
power induction machines with non-axial symmetric

and relatively short rotor only by using 2D FEM mod-
els.

Since, the 3D version of the model is more suitable
for the calculation it does not increase the result’s ac-
curacy in the same range as it extends the computation
time.
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