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Abstract. Nanoparticles are a considerable attention
due to very interesting properties have been accepted
to base matrix materials during the nanostructure in-
corporation. Therefore, this paper has been presented
an experimental study for the dielectric strength of sev-
eral new industrial polymer nanocomposites specimens.
It has been studied the effects of clay nanoparticles in-
corporation into polypropylene (PP), polyvinyl chloride
(PVC), low density polyethylene (LDPE), and high
density polyethylene (HDPE) on electric properties,
dielectric properties, dielectric strength and voltage en-
durance significantly for variant polymers by a simpli-
fied breakdown model. Experimental results have been
compared with respect to unfilled industrial materials
under AC electric field (uniform and non-uniform) and
variant thermal temperatures.
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1. Introduction

Nanodielectrics, which are concentrated in polymer
matrix incorporating nanofillers, have received con-
siderable attention due to their potential benefits
as dielectrics. Nanoparticle-filled polymers provide ad-
vantages over un-filled polymers because they provide
resistance to degradation, and improvement in thermo-
mechanical properties without causing a reduction in
dielectric strength [1], [2], [3] and [4]. Recently pub-
lished results for electrical voltage endurance in these
new materials indicate that very substantial (3 orders
of magnitude) improvements in voltage endurance can
be demonstrated. These improvements in dielectric

properties observed for nano-filled polymers could be
due to several factors:

• the large surface area of nanoparticles which cre-
ates a large ‘interaction zone’ or region of altered
polymer behavior,

• changes in the polymer morphology due to the sur-
faces of particles,

• a reduction in the internal field caused by the de-
crease in size of the particles,

• changes in the space charge distribution,

• a scattering mechanism.

It should also be recognized that this tech-
nology also results in characteristic changes
in non-electrical properties that have been
found beneficial as detailed in references from
a recent review paper [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11] and [12]. In most papers devoted to the
research of polymeric dielectric behavior in a high
electric field the aging of polymers have been related
to macroscopic inhomogeneities of structure. The ma-
jority of authors suppose that the damage of dielectrics
with inhomogeneous sub-microscopic structure under
long-term voltage application can be caused by differ-
ent processes. It is obvious that both these processes
can be observed during ageing of semi-crystalline
polymers, such as low-density polyethylene (LDPE),
in a high electric field. Nanocomposites present
a series of unique properties, such as electrics, mechan-
ics, optics and magnetics, due to nanoparticles with
a giant specific surface area, quantum size effect and
the special interface between particles and polymer ma-
trix. Nanodielectrics have attracted a great attention
since the first experimental data were reported [13], [14]
and [15].

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 182



ELECTRICAL MATERIALS AND EQUIPMENT VOLUME: 13 | NUMBER: 2 | 2015 | JUNE

The homogeneous distribution of nanoparticles
in polymer matrix is another problem of the interface
research. Nanoparticles are dispersed in matrix chiefly
by shear force diffusion and chemical modification in
the majority of experiments. The viscosity of the ma-
trix is an important factor for shear force diffusion.
Chemical modification will alter the surface states of
nanoparticles (such as silane couplings pretreatment)
in order to increase the electrostatic force between
fillers and matrix. In different production processes,
the interface is in various thickness and layer num-
bers. In this way, the results of nanodielectric prop-
erties have little comparability and poor reproducibil-
ity, which has been confirmed by the reported data.
It has been discussed that Dielectric material perfor-
mance, whether conventional or nanocomposite dielec-
tric, its aging, degradation and breakdown present
a strong spatio-temporal hierarchy relationship [16],
[17], [18], [19], [20], [21], [22], [23] and [24].

The current research has been concentrated on the
effects of uniform and non-uniform electric fields on
the new nanocomposite specimen’s insulation materi-
als (Polypropylene, Polyvinyl Chloride, Low density
polyethylene and High density polyethylene). Also,
it has been monitored the changing in dielectric prop-
erties of the new nanocomposite with respect to un-
filled materials, therefore, a comparative study dis-
cussed the effects of under uniform and non-uniform
electric fields on pure and nanocomposites also, mea-
sured the thermal effects on the dielectric strength
of the new nanocomposite specimen’s insulation ma-
terials.

2. Experimental Setup

2.1. Specification of Selected
Nanoparticles

Spherical nanoparticles shape (Diameters: 10 nm) have
been used in our research and in the most polymer
applications. Cost less of clay catalyst is the best filler
among nanofillers industrial materials.

2.2. Specification of Selected Base
Polymers Matrix

Polypropylene is one of the most common and versa-
tile thermoplastics in the plastics industry. PPs are
perhaps the only thermoplastic surpassing all oth-
ers in combined electrical properties, heat resistance,
toughness, chemical resistance, dimensional stability,
and surface gloss at a lower cost than most others.
Polyvinyl Chloride is the most widely used of any of the
thermoplasts, polymerized vinyl chloride, and which

is produced from ethylene and anhydrous hydrochloric
acid. PVC is stronger and more rigid than other gen-
eral purpose thermoplastic materials. Polyethylene is
divided to low-density polyethylene (LDPE) and high-
density polyethylene (HDPE), LDPE is a thermoplas-
tic made from petroleum and it contains the chemi-
cal elements carbon and hydrogen. LDPE has more
branching than HDPE, its tensile strength is lower,
and its resilience is higher [25], [26], [27], [28] and [29].

Nanocomposite Polymer: Preparation of studied
nanocomposites polymers has been used SOL-GEL
method fabrication. The sol-gel processing of the
nanoparticles inside the polymer dissolved in non-
aqueous or aqueous solution is the ideal procedure for
the formation of interpenetrating networks between in-
organic and organic moieties at the milder temperature
in improving good compatibility and building strong
interfacial interaction between two phases. This pro-
cess has been used successfully to prepare nanocom-
posites with nanoparticles in a range of polymer ma-
trices. Several strategies for the sol-gel process are ap-
plied for formation of the hybrid materials [30]. TEM
photos illustrate penetration of nanoparticles polyethy-
lene for LDPE nanocomposites and HDPE nanocom-
posites as shown in Fig. 1. The sol-gel processing
of the nanoparticles inside the polymer dissolved in
non-aqueous or aqueous solution is the ideal procedure
for the formation of interpenetrating networks between
inorganic and organic moieties at the milder temper-
ature in improving good compatibility and building
strong interfacial interaction between two phases. This
process has been used successfully to prepare nanocom-
posites with nanoparticles in a range of polymer ma-
trices. Several strategies for the sol-gel process are ap-
plied for formation of the hybrid materials [30].

Tab. 1: Electric and dielectric properties of pure and nanocom-
posite materials.

Materials
Dielectric
Constant
at 1 kHz

Resistivity
at [Ω m]

Pure PP 2.28 108

PP + 1 %wt Clay 2.21 109

PP + 5 %wt Clay 1.97 109–1010

PP + 10 %wt Clay 1.75 1010–1012

Pure PVC 3.3 1013

PVC + 1 %wt Clay 3.20 1014

PVC + 5 %wt Clay 2.83 1014–1017

PVC + 10 %wt Clay 2.49 1017–1020

Pure LDPE 2.3 1014

LDPE + 1 %wt Clay 2.23 1015

LDPE + 5 %wt Clay 1.99 1015–1018

LDPE + 10 %wt Clay 1.76 1018–1020

LDPE + 10 %wt Clay 2.3 1015

HDPE + 1 %wt Clay 2.27 1016

HDPE + 5 %wt Clay 2.21 1016–1019

HDPE + 10 %wt Clay 2.16 1019–1021
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All polymer materials which studied in this re-
search are available in manufacturing of High-Voltage
(HV) industrial products. HIOKI 3522–50 LCR Hi-
tester device used for measuring characterization of
pure and nanocomposite insulation industrial materials
and showed in Tab. 1.

The Scanning Electron Microscope (SEM) has many
advantages over traditional microscopes, a large depth
of field, much higher resolution, and uses electromag-
nets rather than lenses. Scanning electron microscope
is a type of electron microscope and uses a focused
beam of high-energy electrons to generate a variety
of signals at the surface of solid specimens. Thus,
it produces images of a sample by scanning it with
a focused beam of electrons. Scanning electron micro-
scope can be achieving resolution better than 1 nano-
meter. SEM images that illustrate the penetration of
nanoparticles polyethylene for LDPE nanocomposites
and HDPE nanocomposites have been shown in Fig. 1.

(a) Clay/PP nanocomp. (b) Clay/PVC nanocomp.

(c) Clay/LDPE nanocomp. (d) Clay/HDPE nanocomp.

Fig. 1: SEM images for polymers nanocomposites.

2.3. Specification of Measurement
Devices

HIOKI 3522–50 LCR Hi-tester device measured char-
acterization of nanocomposite insulation industrial ma-
terials. So that, it has been used for measuring electric
and dielectric parameters of nanometric solid dielectric
insulation specimens at various frequencies as shown
in Fig. 2.

Fig. 2: HIOKI 3522-50 LCR Hi-tester device.

On the otherwise, Fig. 3 gives shows HI-POT
TESTERModel ZC2674 device for experiment uniform
and non-uniform electric field distribution through the
thickness of insulation layer with different nanocom-
posite materials.

The Hi-tester device has been specified as 1 kVA,
20 kV, AC and DC voltages, 10 mA, AC and DC cur-
rents. Configuration of both two electrodes of uni-
form electric field has been made from copper and
has 35 mm diameter but configuration of tip electrode
of non-uniform electric field has 0.5 mm diameter.

Fig. 3: HIPOT tester model ZC2674 device.

3. Results and Discussion

Dielectric strength of insulation materials is a vital pa-
rameter for electrical industrial applications. Thus, the
breakdown voltage of new nanocomposite industrial
materials has been caused by applying variant AC volt-
age on the from zero kV until breakdown occurs, also,
AC Conduction current was measured through testing
the specimen from zero Ampere up to 1 mA.
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3.1. Effects of Uniform Electric
Fields on Clay/Polymers
Nanoparticles

Figure 4 illustrates the effect of uniform electric field
on polypropylene nanocomposite materials; it is no-
ticed that increasing clay nanoparticles percentage
in the nanocomposite increases dielectric strength
of the industrial materials (0 %wt: 5 %wt) what-
ever the dielectric strength reduces with increasing clay
nanofillers (5 %wt: 10 %wt) because of accumulation
nanoparticles phenomena due to increasing percent-
age of clay nanoparticles in polypropylene materials.
Figure 5 shows effect of uniform electric field on
polyvinyl chloride nanocomposite materials; it has
been cleared that increasing percentage of clay
nanoparticles up to 10 %wt in polyvinyl chloride
decreases dielectric strength of polyvinyl chloride
nanocomposite industrial materials and increases con-
duction current with increasing percentage of clay
nanoparticles.
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Fig. 4: Effect of clay nanoparticles on polypropylene materials
under uniform electric field.

Figure 6 shows effect of uniform electric field on Low-
density polyethylene nanocomposite materials; it has
been noticed that increasing clay nanoparticles per-
centage up to 5 %wt increases dielectric strength
of low-density polyethylene nanocomposite insulation
specimen. Whatever, accumulation nanoparticles phe-
nomena causes increasing percentage of clay nanopar-
ticles in low-density polyethylene up to 10 %wt.

On the otherwise, Fig. 7 depicts that increas-
ing percentage of clay nanoparticles up to 10 %wt
in high-density polyethylene increases conduction cur-
rent through high-density polyethylene nanocomposite.
And so, decreases the dielectric strength slightly with
increasing percentage of clay nanoparticles. All these
results would impact on AC electrical high voltage
breakdown of the tested insulating materials. The per-
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Fig. 5: Effect of clay nanoparticles on polyvinyl Chloride ma-
terials under uniform electric field.
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Fig. 6: Effect of clay nanoparticles on low-density polyethylene
materials under uniform electric field.
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Fig. 7: Effect of clay nanoparticles on high-density polyethylene
materials under uniform electric field.

formance of the new nanocomposites will be effective
on AC electrical power applications.
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3.2. Effects of Non-uniform Electric
Fields on Clay/Polymers
Nanoparticles

Figure 8 shows effect of increasing clay nanoparti-
cles on dielectric strength and conduction current
of polypropylene materials under non-uniform electric
field; so that, increasing percentage of clay nanopar-
ticles in the polypropylene insulation nanocomposite
specimen’s decreases dielectric strength of polypropy-
lene at the same conduction current, specially,
at increasing nanofillers percentage up to 5 %wt.
Noting that, because of accumulation phenomena of
nanoparticles, the dielectric strength increases slightly
with increasing the percentage of clay nanoparticles.
And so, Fig. 9 depicts that increasing percentage
of clay nanoparticles in polyvinyl chloride insulation
nanocomposite specimen’s increases dielectric strength
of the industrial materials at the same leakage pass
current. Specially, adding Nano fillers percentage
up to 10 %wt.
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Fig. 8: Effect of clay nanoparticles on polypropylene materials
under non-uniform electric field.

Figure 10 shows that effect of clay nanoparticles
on dielectric strength and conduction current in Low-
density polyethylene materials in non-uniform electric
field. Dielectric strength of nanocomposite materials
increases with increasing percentage of clay nanoparti-
cles up to 5 %wt in low-density polyethylene at low ap-
plied electric field (0: 32 MV·m−1) but due to accumu-
late clay nanoparticles with increasing their percentage
more than 5 %wt in Low-density polyethylene causes
decreasing in the dielectric strength of nanocomposite
materials.

On the otherwise, Fig. 11 depicts the effect
of increasing clay nanoparticles on dielectric strength
and conduction current in high-density polyethylene
materials in non-uniform electric field. The dielec-
tric strength of high-density polyethylene nanocom-
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Fig. 9: Effect of clay nanoparticles on polyvinyl Chloride ma-
terials under non-uniform electric field.
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Fig. 10: Effect of clay nanoparticles on low-density polyethy-
lene materials under non-uniform electric field.

posite industrial materials behaved the same be-
haviour of Low-density polyethylene but different elec-
tric field values, specially, at low applied electric field
(0: 23 MV·m−1), the dielectric strength of nanocom-
posite materials increases with increasing percentage
of clay nanoparticles up to 5 %wt in high-density
polyethylene but it decreases with increasing percent-
age of clay nanoparticles more than 5 %wt in high-
density polyethylene.

3.3. Thermal Comparative Study for
Clay/Polymers Nanocomposites

Adding clay nanoparticles has changed the electric and
dielectric nanocomposites industrial materials related
to pure original electric and dielectric base materials
under room temperature, therefore, this study has in-
terested huge filler-polymer matrix interface which has
a major influence on the thermal electric and dielectric
properties.
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Fig. 11: Effect of clay nanoparticles on high-density polyethy-
lene materials under non-uniform electric field.

Table 2 depicts maximum dielectric strength of pure
and nanocomposite materials under uniform and non-
uniform electric field with varying cell test temper-
ature from room temperature at 25 ◦C and 60 ◦C.
It is cleared that there is decreasing in dielec-
tric strength with increasing cell test temperature.
Also, this table shows the dielectric strength of pure
and nanocomposite materials in non-uniform electric
field are higher than dielectric strength of pure and
nanocomposite materials in uniform electric field.

Tab. 2: Maximum dielectric strength of pure and nanocompos-
ite materials under uniform and non-uniform electric
fields.

Uniform Electric Fields Applied [MV·m−1]

Materials

Max.
Dielectric
Strength
at [25 ◦C]

Max.
Dielectric
Strength
at [60 ◦C]

Pure PP 9.1953 6.7693
PP + 10 %wt Clay 13.1628 12.3452

PurePVC 24.4715 20.6753
PVC + 10 %wt Clay 49.4949 47.7735

Pure LDPE 30.8939 25.4653
LDPE + 10 %wt Clay 69.0641 67.9765

Pure,HDPE 22.2922 16.8776
HDPE + 10 %wt Clay 50.9394 48.346
Non-Uniform Electric Fields Applied MV·m−1

Pure PP 10.1107 7.8543
PP + 10 %wt Clay 12.7233 10.5342

Pure PVC 59.4488 50.1874
PVC + 10 %wt Clay 82.3572 751678

Pure LDPE 64.4060 60.448
LDPE + 10 %wt Clay 84.0828 82.6745

Pure HDPE 56.6078 50.5473
HDPE + 10 %wt Clay 78.4624 71.5369

4. Conclusions

This paper proposed new suggested clay/polymers
nanocomposites and has been studied the effects of in-
creasing clay nanoparticles:

• Increasing clay nanoparticles to polypropylene
and Low density polyethylene nanocomposites in-
creases dielectric strength; noted that, related to
accumulation phenomena of clay nanoparticles in-
side polymer matrix, dielectric strength character-
ization of nanocomposite may be changed under
uniform or non-uniform electric fields according
to high percentage of clay nanofillers and polymer
molecular type.

• Increasing clay nanoparticles to polyvinyl Chlo-
ride, and High density polyethylene decreases di-
electric strength; noted that, nature of polymer
matrix doesn’t accumulate nanoparticles accumu-
lation for changing dielectric strength characteri-
zation of the nanocomposite.

• Clay nanoparticles give thermal stability for the
suggested nanocomposite materials; therefore, Di-
electric strength reduction rate of pure industrial
materials is higher than the dielectric strength re-
duction rate in nanocomposites with respect to
increasing temperature environment of industrial
polymers.
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