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Abstract. An approach to fault estimation systems de-
sign, adjusted for linear continuous-time systems, is
proposed in the paper. Based on LMI approach, the
method exploits the state-space observer principle in an
adaptive scheme intended for single actuator faults. A
simulation example, subject to different type of failures,
demonstrates the effectiveness of the proposed form of
the fault estimation technique.
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1. Introduction

Operating conditions in modern engineering systems
are still exposed to possibility of system failure. Any
failure of sensors, actuators or other system com-
ponents can drastically change the system behavior.
Fault tolerant control (FTC) heavily relies on fault de-
tection, identification and isolation schemes (FDI) al-
lows a strategy to improve reliability of the system.

Estimation of an occurred actuator fault can be uti-
lized in the processes of FDI. The final results from FDI
should provide sufficient information for the second
part of the remedial action, performed in the system
after the fault occurrence, namely the control recon-
figuration that is reconfiguring or adapting the nomi-
nal control to compensate undesired effects caused by
a fault. The used principles of fault estimation cover
schemes based on the reduced order observers [4], adap-
tive observers [1], [9], the unknown input observers [3]
and sliding-mode observers [7]. This approach utilizing
two step remedial process is typical for active FTC.
Other option is to utilize passive FTC, but this how-

ever does not offer possibility to find solution that is
optimal after the fault occurrence and is beneficial only
in case of a priori considered faults.

An approach described in this paper utilizes the
adaptive state observer and is usually denoted as the
fast adaptive fault estimation [2], [8].

2. Problem Formulation

A linear dynamic multi-input, multi-output (MIMO)
system in presence of an unknown fault can be de-
scribed by the state-space equations in the following
form:

q̇(t) = A~q(t) +B~u(t) +E~f(t), (1)

~y(t) = C~q(t), (2)

where A ∈ <n×n, E ∈ <n×s, B ∈ <n×r and C ∈ <p×n

are real matrices. To estimate faults, the following
adaptive state estimator is proposed in the general
form:

q̇e(t) = A~ee(t)+B~u(t)+E~fe(t)+J(~y(t)−~ye(t)), (3)

~ye(t) = C~qe(t), (4)

where J ∈ <n×p and ~fe(t) is an estimate of the
fault ~f(t). The above used vectors ~q(t), ~qe(t) ∈ <n,
~u(t) ∈ <r and ~y(t), ~ye(t) ∈ <p are vectors of the state,
estimated state, input, output and estimated output
variables, respectively.

The task is to design the matrix J in such a way that
the observer system matrix Ae = A−JC be stable and
the estimated fault ~fe(t) approximates time properties
of ~f(t). Considering single actuator faults, the matrix
E takes form of the corresponding column of the input
matrix B, i.e. E = Bi for i ∈ 〈1, 2, ...r〉. Moreover, it
is required that rank(CE) is equal to rank(E).
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The state observer Eq. (3) and Eq. (4), is connected
with the fault estimation updating law of the form [6],
[8]:

ḟe(t) = GHT~ey(t), (5)

where H ∈ <p×s is the gain matrix and the matrix
G = GT > 0, G ∈ <s×s is a learning weight matrix to
be set interactively.

The design of the observer matrix parameters has to
ensure asymptotic convergence of the estimation errors
in Eq. (6) to zero values.

~ef (t) = ~f(t)− ~fe(t),

~ey(t) = ~y(t)− ~ye(t).
(6)

Assumption 1 The couple (A,B) is controllable and
the couple (A,C) is observable.

Assumption 2 The unknown fault vector, changing
unexpectedly when a fault occurs, is differentiable and
bounded, i.e., |~f(t)| < ~f , ~f is known, and the value of
~f(t) is set to zero until a fault occurs.

Moreover, Ass. 2 implies that the derivative ~ef (t)
with respect to time can be considered as follows:

~ef (t) = ~f0 − ~fe(t) ⇒ ėf (t) = −ḟe(t). (7)

From the point of the paper main results, the follow-
ing lemma is needed to indicate the reasons for substan-
tial modification of the actuator fault estimator design
condition.

Lemma 1 [2] The estimator system matrix is sta-
ble if there exist symmetric positive definite matrix
P ∈ <n×n and matrices H ∈ <p×s, Y ∈ <n×p

such that:
P = PT > 0, (8)

PA+ATP−YC−CTYT < 0, (9)

PE = CTH. (10)

When the above conditions hold, the observer gain
matrix is given by:

J = P−1Y (11)

and the adaptive fault estimation algorithm is:

ḟe(t) = GHTC~eq(t), (12)

where
~eq(t) = ~q(t)− ~qe(t). (13)

Since single actuator faults act on the system
through different input vectors (columns of the matrix
B), it is possible to avoid design of different estimators
with the tuning matrix parameter G > 0 and formu-
late the task of the estimator design through the set of
matrix equalities:

PEi = CTH. (14)

Therefore solutions of Eq. (8), Eq. (9) and Eq. (14)
are very conservative since the Lyapunov matrix P ver-
ifies the fault observer stability not only for A, but also
with respect to all polytops defined by Ei. To suppress
this disadvantage it is proposed to decouple the Lya-
punov matrix from all system parameters A and Ei

and so to obtain less conservative the enhanced design
conditions. Another reason to apply this principle is if
Eq. (10) is close to singular or singular.

3. Enhanced Design
Conditions

In case of the enhanced design conditions the following
theorem holds. It is evident that the theorem can be
simply modified to respect Eq. (14).

Theorem 1 The fault estimator is stable if for given
positive tuning parameter δ ∈ < there exist a sym-
metric positive definite matrix P ∈ <n×n, matrices
Q ∈ <n×n, H ∈ <p×s, Y ∈ <n×p, identity matrix
Is ∈ <s×s and a positive scalar γ ∈ < such that:

P = PT > 0, γ > 0, (15) P•11 ∗ ∗
P•21 −δ(Q+QT) ∗
0 δETQ −γIs

 < 0, (16)

where

P•11= QTA+ATQ−YC−CTYT +CTC,

P•21 = P−Q+ δQTA− δYC
(17)

and
CTH = QE. (18)

When the above conditions hold, the estimator gain
matrix is given by:

J = P−1Y (19)

and the adaptive fault estimation algorithm is:

ḟe(t) = GHTC~eq(t). (20)

Here and hereafter ∗ denotes the symmetric item in
a symmetric matrix.
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Proof: From system model Eq. (1), Eq. (2) and esti-
mator model Eq. (3), Eq. (4) in this case can be seen
that the time derivative of ~eq(t) is:

ėq(t) = (A−JC)~eq(t)+E~ef (t), (21)

and, moreover, can be expressed in the following form:

(A−JC)~eq(t)+E~ef (t)− ėq(t) = 0. (22)

The Lyapunov function is considered as follows:

v(~eq(t)) = ~eT
q (t)P~eq(t)+~e

T
f (t)G

−1~ef(t)+

+
t∫
0

(~eT
y (r)~ey(r)−γ~eT

f (r)~ef (r))dr,
(23)

where P = PT > 0, G = GT > 0 and γ is square of
the H∞ norm of the transfer matrix function between
~ef and ~eq. Then the time derivative of v(~eq(t)) is:

v̇(~eq(t)) = ~eT
q (t)P~eq(t) + ~eT

q (t)Pėq(t)+

+ėT
f (t)G−1~ef (t) + ~eT

f (t)G−1ėf (t)+

+~eT
y (t)~ey(t)− γ~eT

f (t)~ef (t).

(24)

If it is assumed, that the following statements Eq. (7)
and

ḟe(t) = GHT~ey(t) = GHTC~eq(t), (25)

hold, then the substitution of Eq. (25) into Eq. (24)
leads to

v̇(~eq(t)) = ėT
q (t)P~eq(t) + ~eT

q (t)Pėq(t)−
−~eT

q (t)CTHGG−1~ef (t)−
−~eT

f (t)G
−1GHTC~eq(t)+

+~eT
y (t)~ey(t)− γ~eT

f (t)~ef (t),

(26)

that can be modified into the following form:

v̇(~eq(t)) = ėTq (t)P~eq(t) + ~eT
q (t)Pėq(t)−

−~eT
q (t)CTH~ef (t)− ~eT

f (t)HTC~eq(t)+

+~eT
y (t)~ey(t)− γ~eT

f (t)~ef (t).

(27)

It is possible to define the condition based on
Eq. (22) as:

(~eT
q (t)ST

1 + ėT
q (t)ST

2 )×
×((A−JC)~eq(t)+E~ef (t)− ėq(t)) = 0

(28)

and inserting into Eq. (27), the following expression is
obtained:

v̇(~eq(t)) = ėTq (t)P~eq(t) + ~eT
q (t)Pėq(t)−

−~eT
q (t)CTH~ef (t)− ~eT

f (t)HTC~eq(t)+

+(~eT
q (t)ST

1 + ėTq (t)S
T
2 )((A−JC)~eq(t)−

−ėq(t)) + ((A−JC)~eq(t)− ėq(t))T

(S1~eq(t) + S2ėq(t)) + (~eT
q (t)ST

1 +

+ėTq (t)S
T
2 )E~ef (t) + ~eT

f (t)ET(S1~eq(t)+

+S2ėq(t)) + ~eT
y (t)~ey(t)− γ~eT

f (t)~ef (t).

(29)

If the following condition is defined:

0 = ~eT
f (t)[E

TS1−HTC]~eq(t)−
−~eT

q (t)[S
T
1E−CTH]~ef (t),

(30)

then the equality

ST
1 E−CTH = 0 (31)

implies
CTH = ST

1 E (32)

and this allows to transcribe Eq. (29) as:

v̇(~eq(t)) = ėTq (t)P~eq(t) + ~eT
q (t)Pėq(t)+

+(~eT
q (t)ST

1 + ėTq (t)S
T
2 )((A−JC)~eq(t)−

−ėq(t)) + (~eT
q (t)(A−JC)T − ėTq (t))

(S1~eq(t) + S2ėq(t)) + ėTq (t)S
T
2 E~ef (t)+

+~eT
f (t)ETS2ėq(t) + ~eT

y (t)~ey(t)−
−γ~eT

f (t)~ef (t)

(33)

and with the notation:

~e •Tq (t) =
[
~eT
q (t) ėTq (t) ~eT

f (t)
]
, (34)

it can be written as:

v̇(~eq(t)) = ~e •Tq (t)P•~e •q (t) < 0, (35)

where

P• =

 P•11 ∗ ∗
P•21 −ST

2 − S2 ∗
0 ETS2 −γIs

 < 0 (36)

and

P•11= ST
1 (A−JC) +CTC+ (A−JC)TS1,

P•21 = P+ ST
2 (A− JC)− S1.

(37)

Inserting into Eq. (32), Eq. (36) and Eq. (37) the
following substitutions:

S1 = Q, S2 = δS1, ST
1 J = QTJ = Y (38)

then Eq. (32), Eq. (36) and Eq. (37) implies Eq. (16),
Eq. (17) and Eq. (18). This concludes the proof.

Note, Eq. (17) and Eq. (18) implies that the Lya-
punov matrix P is decoupled from all system parame-
ters.

4. Illustrative Example

To illustrate the proposed method, the system whose
dynamics is described by the equations Eq. (1) and
Eq. (2) is considered with the matrix parameters:

A =


0.1650 −0.0767 0.5173 2.0638
0.2151 0.1866 −0.3077 −1.5260
−0.3851 0.4033 0.2887 −0.3833
−2.0829 1.5170 0.3093 0.1109

 ,
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CT=


2 2
1 2
2 1
2 2

 , B = E =


−0.9042 0
−1.6493 0.4361

0 1.8529
0 −0.0355

 .
For simulation purposes only, the equilibrium of the

system was stabilized by the state feedback controller:

~u(t) = −K~q(t),

where the gain matrix K was designed using the pole-
placement method as follows:

K=

[
−3.1315 1.6633 3.5641 11.3920
−4.2235 3.1471 1.0377 0.9104

]
.

Solving Eq. (8), Eq. (9) and Eq. (10) with respect
to the LMI matrix variables P, H, and Y using Self-
Dual-Minimization (SeDuMi) package [5] for Matlab,
the estimator parameter design problem was solved as
feasible and the LMI matrix variables were:

P =


0.1770 0.2107 0.0321 0.0457
0.2107 0.6888 0.0678 0.2060
0.0321 0.0678 0.1586 −0.0955
0.0457 0.2060 −0.0955 0.6740

 ,

Y=


−0.3691 0.3090
−0.7451 −0.1267
0.0251 0.1647
0.2357 −0.8632

,H=

[
0.4026 −0.1207
−0.2489 0.2774

]
,

so that the observer gain matrix were given as

J =


−1.2534 2.8937
−1.1442 −0.6872
1.5003 −0.0182
0.9967 −1.2693

 .
It can verify that the eigenvalue spectrum ρ(Ae) of

the estimator system matrix Ae is stable, where:

ρ(Ae) =
{
−2.1745 − 2.6067 − 3.3377 ± 0.1566 i

}
.

Setting the tuning parameter G as:

G =

[
1.7 1
1 5.5

]
,

the observer fault response is given in Fig. 2.

This figure presents the fault signal, as well as its es-
timation, reflecting a single actuator fault in the second
actuator. Fault starts at the time instant t = 30 s and
is applied for 40 s. The tuning parameter was experi-
mentally set considering the maximal value of the fault
signal amplitude. Then, at the time instant t = 100 s,
the first actuator fault is applied for 40 s.

From the simulation results in Fig. 2 it can be ob-
served that the differences between the signals reflect-
ing a single actuator fault and the observer approxi-
mate ones tends to zero. Moreover, the states of the

Fig. 1: The actuator faults and its estimation.

system converge to the equilibrium when the actuator
fault disappeared, via the used controller.

Applying the same toolbox to solve LMIs Eq. (15),
Eq. (16), Eq. (17) and Eq. (18) conditioned by
δ = 0.001, the resulting set of the matrix variables
was as follows:

P =


23.2065 −5.2282 6.5739 5.9199
−5.2282 16.1633 −5.5997 4.2321
6.5739 −5.5997 11.1507 4.6793
5.9199 4.2321 4.6793 24.1004

 ,

Q =


23.2346 −5.2370 6.5874 5.8961
−5.2420 16.1435 −5.6122 4.2479
6.5646 −5.6171 11.1679 4.6516
5.9477 4.2403 4.7055 24.0935

 ,

Y=


−4.9513 3.7898
−6.9495 11.8052
10.1032 −1.6169
11.5372 −3.4027

, H=

[
9.5143 13.2220

−15.7000 −8.3657

]

and the estimator gain matrix J, obtained using
Eq. (19), was:

J =


−0.7142 0.4462
−0.5347 1.1482
0.8107 0.3902
0.5906 −0.5282

 ,
which gives the following stable eigenvalue spectrum:

ρ(Ae) =
{
−0.4091±3.2455 i− 0.8964±1.0815 i

}
.

Finally, setting the tuning parameters G as follows

G =

[
0.6 0.1
0.1 0.6

]
,

the observed actuator fault estimation on the output
of the fault observer is given in Fig. 2.

This figure expresses the fault signal and its estima-
tion, indicating a single actuator fault in the second
actuator, starting at the time instant t = 30 s and ap-
plied for 40 s, as well as a single actuator fault in the
first actuator occurring at the time instant t = 100 s
and lasts for 40 s. The tuning parameters G and δ
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Fig. 2: The actuator faults and its estimation using the en-
hanced design condition.

were set experimentally considering the maximal value
of fault signal amplitude. It is obvious that the ob-
tained fault estimation dynamics is slightly faster then
can be obtained using the standard design criteria.

Comparing the both methods, it is evident that the
Frobenius norms of the observer gain matrices J, G,
implying from the enhanced design criterion, are sub-
stantial less than the Frobenius norms of J, G de-
signed using the standard approach. This explains the
higher sensitivity and faster dynamics of the proposed
method.

Of course, the both fault observers which parameters
were obtained using the solutions of the LMI prob-
lems specified by Lem. 1 and Thm. 1 can success-
fully provide for the observer steady-state properties
and asymptotic dynamics.

5. Conclusion

Fault estimation for linear continuous-time systems
based on the standard design conditions provides useful
and in the process easily implementable fault detection,
isolation and identification. The proposed approach
to fault estimation for linear continuous-time systems,
utilizing the enhanced design conditions, allows even
better results, when the occurred actuator faults are
estimated more precise then in previous case as it can
seen in the simulation results.

Tuning parameters G and δ were set experimentally,
incorrect values of the parameters would potentially re-
sult in unstable or noisy response of the fault estima-
tion signal. It would be beneficial in the perspective to
determine values of the parameters G and δ using any
analytical or numerical solution.
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